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Abstract

Web services technology is emerging as the
main pillar of service-oriented architectures
(SOAs). This technology facilitates ap-
plication integration by enabling program-
matic access to applications through stan-
dard, XML-based languages and protocols.
While much progress has been made toward
providing basic interoperability among ap-
plications, there are still many needs and
unexploited opportunities in this area. In
particular, services in SOAs require richer
description models than object or compo-
nent interfaces. This is due to the loose
coupling inherent in SOAs and therefore to
the fact that services are developed indepen-
dently of clients. Hence, service descriptions
need to include all the information needed
by clients to understand if they can inter-
act with a service and how. As agreed by
many researchers and practitioners, service
descriptions should include not only the ser-
vice interface, but also the business proto-
col of the service, i.e., the specification of
which message exchange sequences are sup-
ported by the service. This paper discusses
the augmentation of business protocols with
specifications of temporal abstractions (e.g.,
temporal constraints on when an operation
must or can be invoked), focusing in par-

ticular on problems related to compatibil-
ity and replaceability analysis. It defines
concepts and provides primitives for analyz-
ing compatibility between the protocols of
requesters and providers and for analyzing
similarities (replaceability) between the pro-
tocols of two providers. We describe these
notions both informally and formally, and
provide algorithms to check temporal com-
patibility and replaceability.

1 Introduction

Web services are increasingly gaining ac-
ceptance as a framework for facilitat-
ing application-to-application interactions
within and across enterprises. Application
interoperability has been and still is a diffi-
cult issue due to difficulties created by het-
erogeneous and autonomous systems. Web
services provide abstractions and technolo-
gies for exposing enterprise applications as
services and make them accessible program-
matically through standardized interfaces.
Indeed, the main benefit they bring to appli-
cation integration is that of standardization,
in terms of description languages, coordina-
tion, and interaction protocols [1, 16]. Stan-
dardization at interface definition language
(WSDL) and transport protocol (SOAP)
has enabled basic interoperability at mes-



saging layer. Indeed, developers are begin-
ning to use SOAP and WSDL to integrate
enterprise applications [18].

While much progress has been made to-
ward providing basic interoperability, there
is still a lot to be done to simplify service
development and interaction. In particular,
an important aspect of Web services that
affects interoperability is that services are
loosely-coupled, that is, are not developed
only to interact with specific clients but are
meant to serve the needs of many differ-
ent clients, possibly developed by different
teams or even different companies. Hence,
developers of client applications need to be
aware of all functional and non-functional
aspects of a service to be able to understand
if they can/need interoperate with a service
and how to develop clients that can interact
correctly with the service. For this reason,
service descriptions are richer than “just”
descriptions of interfaces as in conventional
middleware. Specifically, it is commonly ac-
cepted that a service description should in-
clude not only the interface, but also the
business protocol supported by the service,
i.e., the specification of possible message ex-
change sequences (conversations) that are
supported by the service [5].

Tools supporting service development to-
day are mainly concerned with interoper-
ability at lower levels of service stack (e.g.
mappings from WSDL to java and vice
versa, making two SOAP-based systems talk
to each other). There is little support for
high level modeling and analysis of abstrac-
tions at higher level of services stack, and in
particular there is little support for proto-
col modeling and management. We believe
that indeed protocol modeling and manage-
ment will be key in supporting Web service
development and interaction, and that de-
veloping formal models and a protocol al-
gebra will have a positive impact similar to
the one that the relational model and the re-
lational algebra had in database technology.
The importance of formal analysis of service
protocols in terms of automated support to
services interoperability at the business pro-

tocol level has been discussed in some recent
papers (e.g., [9, 10, 15, 11]).

When developing our framework for ser-
vice protocols modeling, analysis, and man-
agement [5, 9], we identified the need for
representing temporal abstractions in pro-
tocol descriptions. In particular, our analy-
sis of the characteristics and requirements
of service protocols in terms of descrip-
tion languages, we found that, in addition
to message choreography constraints, pro-
tocol specification languages need to cater
for time-sensitive conversations (i.e., conver-
sations that are characterized by temporal
constraints on when an operation must or
can be invoked). For example, a protocol
may specify that a purchase order message
is accepted only if it is received within 24
hours after a quotation has been received.
In this paper, we discuss the augmentation
of business protocols with specifications of
temporal abstractions (called timed proto-
cols). We show that temporal abstractions
are a crucial aspect of protocol modeling and
we show how these can be modeled. Then
we provide mechanisms for analyzing timed
protocol specifications, and specifically for
identifying if and under what conditions two
services, characterized by certain timed pro-
tocols, can interact. We also provide ab-
stractions and operators to verify whether
a service, characterized by a certain proto-
col, can be used to substitute another ser-
vice. We motivate why this kind of analysis
is important in simplifying service develop-
ment and binding, informally introduce the
related problems, and then formally define
concepts and algorithms.

This paper is structured as follows. We
start by presenting the model we propose to
represent temporal abstractions of business
protocols (Section 2). We then motivate and
discuss the need for protocol compatibility
and replaceability analysis (Section 3). Sec-
tion 4 defines operators that enable char-
acterizing compatibility and replaceability
classes for timed protocols while Section 5
describes the corresponding algorithms. Fi-
nally, in Section 6, we review related work



and provide some concluding remarks. For
space reasons, proofs are omitted. They can
be found instead in [8].

2 Timed business protocols

This section first presents informally the
timed business protocols which extend the
business protocols to take into account tem-
poral abstractions. We then give a formal
definition.

In our approach, business protocols are
modeled as deterministic finite state ma-
chines, where the states represent the dif-
ferent phases in which a service may go
through during its interaction with a re-
quester. Transitions are triggered by mes-
sages sent by the requester to the provider
or vice-versa (hence, transitions are labeled
with either input or output messages). A
message corresponds to the invocation of
a service operation or to its reply. Note
that each service may be simultaneously in-
volved in several message exchanges (conver-
sations) with different clients, and therefore
can be characterized by multiple concurrent
instantiations of the protocol state machine.
The purpose of the protocol is essentially to
specify the set of conversations that are sup-
ported by the service. The choice of deter-
minism comes from the observation that al-
lowing multiple possible target states after
a given transition will make protocols am-
biguous in the sense that a service can move
to a state that cannot be predicted by its
clients. See [6, 1] for more details on the use
of state machines for modeling protocols and
for a discussion of why they are a well suited
formalism.

Example 1 As an example, Figure 1 shows
a graphical representation of a protocol P
that describes the external behavior of an or-
der management service that allows users to
buy some kinds of goods. Each transition
is labeled with a message name followed by
the message polarity, that is, whether the
message is incoming (plus sign) or outgo-
ing (minus sign) [20]. In this paper, we use

the notation m(+) (respectively, m(−)) to
denote that m is an input (respectively, out-
put) message. For instance, the protocol P
specifies that the order management service
is initially in the Start state, and that clients
begin using the service by sending a login
message, upon which the service moves to
the Logged state (transition login(+)), etc.

For simplicity, and w.l.o.g., we do not
model message replies in the examples
(e.g., at Figure 1 there is no message
quoteReply(−) that may be used by a ser-
vice to reply to a quoteRequest(+) message).
In fact, we can assume that transitions can
be labeled with operations (i.e., either mes-
sages or pairs of request/reply of messages).

2.1 Extending business protocols

with temporal abstractions

In our previous work on protocol model-
ing [5, 7], we identified that catering for tem-
poral abstractions in protocol descriptions
is an important requirement. In particu-
lar, our analysis of the characteristics and
requirements of service protocols in terms
of description languages, we found that,
although most state transitions occur due
to explicit operation invocations, there are
cases in which transitions occur without an
explicit invocation by requesters. We refer
to these transitions as implicit transitions.
The large majority of implicit transitions
are due to timing issues (deadline expira-
tions). For example, many services allow re-
questers to reserve a resource or to perform
certain actions (invoke certain operations)
only within a time window, after which these
operations cannot be performed any more.
There are countless examples of this behav-
ior, such as airline companies allowing users
to hold unticketed reservations only for a
certain time period, or goods sellers allowing
returns within a specified number of days.
To model this important class of behaviors,
we introduce the notion of timed transitions.
A timed transition occurs automatically af-
ter a time interval is elapsed since the transi-
tion is enabled (i.e., the conversation state is
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Figure 1: A sample timed business protocol P.

the transition’s source state), or as a certain
date and time is reached.

Example 2 Consider again the protocol P
of Figure 1. This protocol specifies that a
user interacting with a service supporting
this protocol needs first to invoke the login
operation and then the searchGoods opera-
tion. Then, at the state Searching, users can
add/remove goods from their shopping cart
(operations addToCart and removeFromCart
respectively) or search for other goods (op-
eration searchGoods). After that, the user
can ask for a price quotation by invoking
the operation quoteRequest that leads the
service to the state Quoted. The quota-
tion is valid only for 3 days (equal to 4320
minutes), a time interval within which the
user can order the selected goods (operation
order). After this period of time, the con-
versation moves to the canceled state, de-
noting that the server has canceled the order
(implicit transition expired with a temporal
constraint 4320min). The canceled state is
a final state, and the operation order can-
not be invoked from that state. Note that the
implicit transition expired imposes time con-
straints on all transitions that can be fired
from state Quoted (i.e., the operations order,
searchGoods and cancel), as once it fires it
leads the conversation to a state from which
those operations are not allowed. An anal-
ogous reasoning can be applied to transition
Cancellation deadline expired.

We use the term timed business protocol
(or timed protocol for short) to denote a
business protocol whose definition contains

timed transitions. The next two subsec-
tions define formally timed protocols and
give their associated trace semantics.

2.2 Formalization

We present here an extended definition of
protocols that allows to cater for timing con-
straints.

Definition 1 (Timed business proto-
col)

A timed business protocol is a tuple P =
(S, s0,F , M,R) which consists of the follow-
ing elements:

• S is a finite set of states, with s0 ∈ S
the initial state.

• F ⊆ S is a set of final states. If F = ∅,
then P is said to be an empty protocol.

• M = Me
⋃

Mi (such that Me
⋂

Mi = ∅)
is a finite set of messages where Me is a
finite set of explicit messages while Mi
is a finite set of implicit messages. For
each message m ∈ Me, we define a func-
tion Polarity(P,m) which will be pos-
itive (+) if m is an input message in
P and negative (−) if m is an output
message in P.

• R ⊆ S2 × M is a finite set of transi-
tions. Each transition (s, s′,m) iden-
tifies a source state s, a target state
s′ and either an explicit or an implicit
message m. In this case, we say that
the message m is enabled from a state
s. In the sequel, we use R(s, s′,m) to
denote the fact that (s, s′,m) ∈ R and



we denote by outpute(s) the set of ex-
plicit messages that are enabled from a
state s.

• If R(s, s′,m) and m ∈ Mi , then we de-
fine a function T ime(s,m) that returns
a rational number t ∈ Q≥0 that specifies
the timing constraints of m.

We assume that transitions are instanta-
neous while time elapses in the states. Note
that time constraints on a given transition
R(s, s′,m) are expressed relatively to the en-
tering date into the state s. For example,
the previous time constraint on the transi-
tion expire of the protocol P of figure 1 is
specified as follows: T ime(Quoted, expire) =
4320min.

We consider timed business protocols as
deterministic systems, i.e., they verify the
following two conditions: (i) a protocol has
only one initial state, and (ii) for every state
s and for every explicit message m of a given
protocol P, there is at most one state s′ of P
such that the transition (s, s′,m) holds in P.
Also we assume that there is at most only
one implicit transition that can be enabled
at a state s as, even if there are many, at
most only one can be fired thus preempting
the others (we do not deal in this paper with
parallel protocols). Finally, the two condi-
tions given below enable to verify whether a
given protocol is correct or not, i.e, whether
an instantiation of the protocol is guaran-
teed to be executable: (i) A protocol must
be deadlock free (i.e, there does not exist
states that cannot reach a final state). This
may be achieved by removing from protocol
definitions any state that does not belong
to a complete path starting from the initial
state and ending in a final state, and (ii) A
protocol must not contain cycles of implicit
transitions. In the remaining of this paper,
we assume that timed protocols are correct.

2.3 Timed protocol semantics

A timed business protocol defines two kinds
of constraints on the external visible behav-
ior of a given service:

(i) the conversations, expressed in term
of sequences of messages exchanges,
that a service supports. For exam-
ple, the sequence of message exchange
login(+)·searchGoods(+)·addToCart(+)
is allowed by (compliant with) the pro-
tocol P of figure 1 while the sequence
login(+)·addToCart(+)·searchGoods(+)
is not compliant with P.

(ii) timing constraints that specify when
a given messages is enabled to occur
inside a conversation. For example,
taking into account time constraints,
the sequence login(+) · searchGoods(+) ·
addToCart(+) · quoteRequest(+) ·
order(+) will be compliant with the
protocol P of figure 1 only if the
message order is received before 4320
minutes after the message quotation
has been received.

Condition (i) above can be characterized
using the so-called linear time process se-
mantics (see [14] for details on the vari-
ous process model semantics). In such a
semantics, a process is completely deter-
mined from the set of its (partial) observ-
able runs (or traces). Following this ap-
proach, the behavior of a protocol will be
characterized in terms of all its observable
traces. For example, the sequence of mes-
sages login(+)·searchGood(+)·addToCart(+)
is an execution trace (or simply, a trace)
of the protocol P. We are particularly in-
terested in the complete traces (i.e., traces
that start from an initial state and end at
a final state). For example, the sequence
login(+) · searchGoods(+) · addToCart(+) ·
quoteRequest(+) · cancel(+) is a complete
trace of the protocol P of Figure 1.

To characterize condition (ii), we need to
extend the notion of trace to cater for tim-
ing constraints. Consider an execution of a
service S that supports a protocol P. If m
is an input message in P, we use the expres-
sion (m(+), t) to denote the reception of the
message m at an instant t. t represents the
elapsed time since the beginning of the ex-
ecution of S (i.e., the beginning of the con-



versation in which m is involved). The pair
(m(+), t) is called an input event. Similarly,
a pair (m(−), t) is called an output event and
represents the fact that the service issues
a message login at an instant t. An event
(m, t) is called implicit if m is an implicit
message. A timed trace1 is then defined
as a sequence of input and output events
(a0, t0), . . . , (an, tn) where the occurrence of
times increase monotonically, i.e., t0 ≤ t1 ≤
. . . ≤ tn. As an example, the sequence
of events (login(+), 0) · (searchGoods(+), 1) ·
(addToCart(+), 3) · (quoteRequest(+), 7) ·
(cancel(+), 120) is a timed trace.

We introduce below the notion of execu-
tions of a timed protocols that will be useful
to formally define timed traces.

Definition 2 (Executions of timed pro-
tocols)

Let P = (S, s0,F , M,R) be a
timed protocol. An execution σ =
s0.(a0, t0).s1 . . . sn−1.(an−1, tn−1).sn of
P is an alternating sequence of states and
events of P, starting and ending with a
state, such that ∀j ∈ [0, n-1], we have
R(sj, sj+1, aj) and:

• if aj ∈ Me and there exists a state s′

such that R(sj, s
′,m) with m ∈ Mi ,

then tj-tj−1 < Time(sj ,m), or

• if aj ∈ Mi, then tj-tj−1 = T ime(sj , aj)

If s0 is the initial state and sn a final state
of P, then σ is called a complete execution
of P.

We define now the notion of timed traces.

Definition 3 (Compliance of timed
traces with a protocol)

Let P = (S, s0,F , M,R) be a
timed protocol. A sequence of events
τ = (a0, t0), . . . (an, tn) is a timed
trace of P iff there exists a set
of states s0, . . . , sn in S such that
στ = s0.(a0, t0).s1 . . . , sn−1.(an−1, tn−1).sn

is an execution of P.

1The notion of timed trace is inspired from [3]
where it is called timed word.

The trace τ is compliant with P if στ is a
complete execution of P.

An observable trace of P is a trace ob-
tained from a complete timed trace of P by
removing the implicit events.

Note that we are only interested by the
observable timed traces of a protocol (i.e.,
traces containing only explicit messages).
Implicit messages act as silent actions which
are not externally observables. In the se-
quel, and by abuse of language, we use the
term timed traces (or simply traces) to refer
to complete timed observable traces of a
protocol. Informally, a timed trace is com-
pliant with a given protocol if the ordering of
the messages in the trace is compliant with
the ordering prescribed by the protocol and
each message that appear in an event of the
trace is received/issued at an instant that
satisfies the timing constraints of that pro-
tocol.

Example 3 Consider an execution of
a service S that supports the proto-
col P depicted at Figure 1. The timed
trace (login(+), 0) · (searchGoods(+), 1) ·
(addToCart(+), 3) · (quoteRequest(+), 7) ·
(cancel(+), 120) is a timed trace which
is compliant with the protocol P. How-
ever, the timed trace (login(+), 0) ·
(searchGoods(+), 1) · (addToCart(+), 3) ·
(quoteRequest(+), 7) · (cancel(+), 262807) is
not compliant with the protocol P because
the operation cancel is invoked 4380 minutes
after the operation quoteRequest (i.e., after
the service entered the state Quoted).

Since we deal with deterministic systems,
the semantics of a timed protocol P can
be characterized by the set of all the timed
traces which are compliant with that pro-
tocol. In the following, given a protocol P,
we note by Tr(P) the set of all (observable)
timed traces of P. Moreover, timed proto-
cols can be compared with respect to their
semantics as given below.

Definition 4 (Timed subsumption and
timed equivalence)



Let P1 and P2 be two timed protocols.
Then, P1 subsumes P2, noted P2 .T P1,
iff Tr(P2) ⊆ Tr(P1).

P1 and P2 are said to be equivalent, noted
P1

∼=T P2, iff Tr(P2) = Tr(P1).

2.4 Timed protocol interaction

Interactions between two given timed pro-
tocols can also be characterized in terms of
complete timed traces as illustrated by the
example below.

Example 4 Consider protocol P depicted
on Figure 1 and its reversed protocol P′

obtained from P by reversing the polarity
of the messages (i.e., input messages be-
comes outputs and vice versa). P′ can inter-
act correctly with P in the sense that, con-
sidering a given interaction between these
two protocols, whenever P′ sends a message
at an instant t, the protocol P could re-
ceive it and vice versa. For example, proto-
col P′ supports the following complete timed
trace: (login(−), 0) · (searchGoods(−), 1) ·
(addToCart(−), 2) · (quoteRequest(−), 3) ·
(cancel(−), 4). In this trace, cancel is the
only operation whose temporal availability is
restricted since both P and P′ have an im-
plicit transition that is fired 4320 minutes
after having entered the Quoted state. In
the previous trace the cancel message is sent
by P′ only 1 minute after the quotation has
been performed, hence the message is legal.

Indeed, from the previous example, we
can observe that when P′ interacts with P
following a given timed trace τ , protocol
P follows exactly a similar trace but with
inverse polarity of messages. If P′ is exe-
cuted according to the trace given above,
and if it is interacting correctly with P,
so P will necessarily follow the execution
trace: (login(+), 0) · (searchGoods(+), 1) ·
(addToCart(+), 2) · (quoteRequest(+), 3) ·
(cancel(+), 4). In this case, we call the path
(login, 0) · (searchGoods, 1) · (addToCart, 2) ·
(quoteRequest, 3) · (cancel, 4) a timed inter-
action trace of P and P′. Note that, polarity
of messages that appear in interaction traces

is not defined as in such traces each input
message m of one protocol coincides with
an output message m of the other protocol.

Let τ be a timed trace of a protocol P.
In the sequel, we denote by τ the inverse
trace of τ (i.e., the trace obtained from τ

by inverting polarity of messages) and by
Unp(τ) the trace obtained from τ by re-
moving polarity of messages. For exam-
ple, if τ = (m1(+), t1) · (m2(−), t2) then
τ = (m1(−), t1) ·(m2(+), t2) while Unp(τ) =
(m1, t1) · (m2, t2).

Definition 5 (Timed interaction
traces)

Let P and P ′ be a timed protocol and
let τ = (a0, t0), . . . (an, tn) be a sequence of
events in which the polarity of messages is
not defined. Then τ is a timed interaction
trace of P and P ′ iff there exists two timed
traces τ1 and τ2 such that: (i) τ1 ∈ Tr(P)
and τ2 ∈ Tr(P ′), and (ii) τ1 = τ2, and (iii)
τ = Unp(τ1) = Unp(τ2).

Continuing with the example 4,
(login, 0) · (searchGoods, 1) · (addToCart, 2) ·
(quoteRequest, 3) · (cancel, 4) is a timed
interaction trace of protocols P and
P′ since the timed trace (login(−), 0) ·
(searchGoods(−), 1) · (addToCart(−), 2) ·
(quoteRequest(−), 3) · (cancel(−), 4) is com-
pliant with P′ while its reversed trace is
compliant with P.

3 Compatibility and re-

placeability analysis

This section first discusses the problem and
motivates the need for protocol analysis
(and specifically compatibility and replace-
ability analysis). Then, it focuses on the
specific issues related to timed business pro-
tocols.

In the introduction we have presented
protocols as an important part of a ser-
vice description as it helps developers how
to write clients that interact with a ser-
vice. There are, however, many other bene-
fits that protocol modeling can provide, es-
pecially in terms of automated support to



service development and binding. Specifi-
cally, we argue that there is a need for for-
mal protocol analysis techniques and for a
protocol algebra that allows users to ma-
nipulate and compare protocol definitions.
More specifically, once services are endowed
with protocol specifications, protocol man-
agement operators can be identified to per-
form the following type of analysis:

• compatibility analysis: this refers to
checking if the protocol of a requester
and of a provider are compatible, that
is, if conversations can take place be-
tween the services.

• replaceability analysis: this refers to
checking if a service provider R can re-
place another service provider S from
a protocol standpoint, that is, if R can
support the same conversation that S
supports.

• compliance analysis: while the previous
two analysis focus on comparing proto-
cols of two services, compliance focuses
on verifying whether the implementa-
tion of a service actually supports the
declared protocol.

• correctness analysis: this refers to ver-
ifying the protocol definition to ensure
that it has certain properties, e.g., that
there is always a path in the protocol
that allows conversations to end in a fi-
nal state.

A proper discussion of all the above as-
pects would be way too lengthy to fit in a
single paper. Hence, in the following we fo-
cus on compatibility and replaceability (we
refer the reader to [4] for discussion on pro-
tocol compliance). These are very impor-
tant properties of pairs of protocols, and
their automated verification is very benefi-
cial. Specifically, compatibility analysis is
useful at both service development time and
at binding time. It supports developments
of clients since it helps developers verify if
the service they have created to interact
with a certain provider can actually hold a

conversation with that provider. It supports
binding since when a client is searching for
suitable services, compatibility is one of the
factors to be considered as there is no use
in selecting a service with which the client
is not compatible. Replaceability analysis
becomes very handy in many important sit-
uations: for example, when developers cre-
ate a new version of a service, they need to
verify if the new service can hold all con-
versations of the previous version or, if not,
they need to be aware of which conversa-
tions are now disallowed. Furthermore, as
standardization in Web services continues
to take place, it is likely that consortia will
provide standard specifications for Web ser-
vices protocols in specific business domain.
RosettaNet, for example, defines standard
business protocols for services in the IT sup-
ply chain space. Hence, service developers
that aim at supporting a certain standard
specification must be able to verify if their
protocol can hold the same conversation as
the one specified by the standard.

For both compatibility and replaceability,
we have defined both classes to identify dif-
ferent levels of compatibility and replace-
ability, as well as operators that can be ap-
plied to protocol definition to asses the level
of compatibility and replaceability. We in-
troduce two compatibility classes below:

• Partial compatibility (or simply, com-
patibility): A protocol P1 is partially
compatible with another protocol P2 if
there are some executions of P1 that can
interoperate with P2, i.e., if there is at
least one possible conversation that can
take place among two services support-
ing these protocols

• Full compatibility : a protocol P1 is fully
compatible with another protocol P2 if
all the executions of P1 can interoperate
with P2, i.e., any conversation that can
be generated by P1 is understood by P2.

The following are replaceability classes.

• Protocol equivalence w.r.t. replaceabil-
ity : two business protocols P1 and P2



are equivalently replaceable if they can
be interchangeably used in any context
and the change is transparent to clients.

• Protocol subsumption w.r.t. replaceabil-
ity : a protocol P2 is subsumed by an-
other protocol P1 w.r.t. replaceability
if P1 supports at least all the conver-
sations that P2 supports. In this case,
protocol P1 can be transparently used
instead of P2 but the opposite is not
necessarily true.

• Protocol replaceability with respect to a
client protocol : A protocol P1 can re-
place another protocol P2 with respect
to a client protocol Pc if P1 behaves
as P2 when interacting with a specific
client protocol Pc.

• Protocol replaceability with respect to an
interaction role: Let PR be a business
protocol. A protocol P1 can replace an-
other protocol P2 with respect to a role
PR if P1 behaves as P2 when P2 be-
haves as PR. This replaceability class
allows to identify executions of a pro-
tocol P2 that can be replaced by pro-
tocol P1 even when P1 and P2 are not
comparable with respect to any of the
previous replaceability classes.

• Partial protocol replaceability : for all of
the above classes, we can distinguish
between full and partial replaceability.
Full replaceability is as defined above.
Partial replaceability is when there is
replaceability but only for some conver-
sations and not others. For example, we
have partial replaceability with respect
to a client protocol when protocol P1

can replace another protocol P2 in at
least some of the conversations that can
occur with Pc.

In earlier work [9], we have identified op-
erators to verify the compatibility or re-
placeability classes to which a pair of non-
timed protocols belongs, as well as opera-
tors to extract the part of the protocols that
are or are not compatible and replaceable.

We have already stressed the importance of
time modeling in protocols, which has led
to the definition of the protocol model infor-
mally presented in the previous section and
formally described later. Correspondingly,
there is the need for revisiting and extending
the concepts and the formalizations defined
earlier for ordinary protocols to make them
applicable to timed protocols, as well as for
revisiting earlier formalizations and analysis
to cater with this extended protocol model.
This is far from easy, as the introduction
of time aspects adds significant complexity
to the problem. We next discuss the novel
opportunities and needs that timed proto-
cols bring in this regard, first informally by
means of example and then formally.

3.1 Compatibility in timed proto-

cols

We present here several examples related
to protocol compatibility analysis, starting
from a simple case to more complex ones.
We describe several examples as there are
several different aspects that need to be con-
sidered in timed protocol analysis. These
examples will help us motivate the need for
additional compatibility classes and opera-
tors, formally described in the next section.
The same will be done later for replaceabil-
ity.

We present below a simple example to il-
lustrate incompatibility between two proto-
cols.

Example 5 Consider a protocol P′

that supports the following timed trace:
(login(−), 0) · (searchGoods(−), 1) ·
(addToCart(−), 2) · (quoteRequest(−), 3) ·
(cancel(−), 2890). During such an execu-
tion, P′ cannot interact correctly with the
protocol P of Figure 1. Indeed, P′ will fire
the operation cancel 2890 minutes after
the quotation has been performed, which is
more than the 2890 minutes allowed by P
(i.e., P has already moved to the Canceled
state).

The previous case were simple to check
because it was sufficient to compare pairs of
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Figure 2: Two compatible timed protocols.

states locally. The following example illus-
trates a more complex case.

Example 6 Consider the protocols P and
P′ depicted on Figure 2. Unlike the previ-
ous examples, the two protocols have very
different shapes. For instance, we can ob-
serve that after the execution of the opera-
tion x the protocols P and P′ move, respec-
tively, to the states s0 and s′0. These states
do not offer the same operations (at least if
we consider the operations that are defined
explicitly at these two states). The state s0

provides the operations a, b and c while the
state s′0 only provides the operations a and b.
Consequently, focusing compatibility check-
ing only on these two states is not enough.
Indeed the operation c for example may be
available for a client interacting with this
service after 240 minutes. This is due to
the presence of an implicit transition i1 that
automatically leads a service to the state s′1
from which c can be fired.

Consequently, to be able to check compat-
ibility between protocols there is a need for
a mechanism that makes explicit all the op-
erations that are available (i.e., can be fired)
at a given state as well as their associated
timing constraints.

Example 7 Continuing with the example,
to check if protocol P and P′ are compati-
ble we need also to consider all the states
that are automatically (implicitly) reachable
from a given state. In our case, checking if
s0 and s′0 are compatible implies that we also
consider s′1 and s′2 since they can be reached
from s′0 through i1 and i2. More precisely,

we need to make explicit all the operations,
and their associated timing constraints, that
are available at these states. For example,
as given below, looking to the implicit tran-
sitions, we can derive the temporal availabil-
ities of the operations at the states s′0 and s0:

(P)







a : [0min, 540min]
b : [0min, 540min]
c : [0min, 540min]

(P′)







a : [0min, 240min]
b : [0min, 780min]
c : [240min, 540min]

Operation a will be performed by P′ during a
temporal window where P is ready to accept
the message fired by P′. The same is true
for c. The case of b is different since it is P
that sends the message. The temporal win-
dow defined by P′ for receiving the related
message is wider than the one used for P to
send it, thus P′ is ready to receive a message
b fired by P. We see that conversations can
take place between P and P′ as the messages
can be exchanged during the allowed tem-
poral slices defined by each protocol. How-
ever the compatibility between s0 and s′0 is
not obvious since several other states have
to be taken into account to get to the conclu-
sion that a compatibility is effectively possi-
ble. However, note that compatibility is de-
pendent on timing. In fact, not all conver-
sations that can be generated by the client
(P) can be supported by the provider (P′).
If the client implementation is such that the
client sends a message c right away after a
message x, then it will cause the provider to
respond with a fault message.

Finally, the following example shows that
implicit transitions can also influence the
identification of final states and this natu-
rally impacts compatibility analysis.

Example 8 Let’s consider the 3 protocols
P, P′ and P′′ depicted on Figure 3. We can
observe that when interacting with P′ or P′′,
the protocol P will reach its final state af-
ter executing the operations a and b while
P′ and P′′ both remain at intermediary states
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Figure 3: Another compatibility problem il-
lustrated.

(respectively, the states s′2 and s′′2). Clearly,
this is not a problem for P′ as this protocol is
able to automatically reach a final state from
the state s′2, and hence, its terminates cor-
rectly the conversation. Therefore, the in-
teraction of P with P′ is correct. However,
P and P′′ are not compatible since P′′ re-
mains in an intermediary state and will not
be able to terminate correctly its execution
(i.e., to reach a final state).

The above discussion has emphasized the
need for a new compatibility class, called
time-dependent compatibility. Protocols P
and P′ have time-dependent compatibility
if they are compatible only when they ex-
change messages following certain time con-
straints. Hence, time-dependent compatibil-
ity is a kind of partial compatibility. Note
that an implementation of a client may be
able to read the service provider’s protocol
and time its interaction so that messages
are sent when allowed. The discussion of
such “adaptive” implementations is outside
the scope of this paper, since as mentioned
here we limit to protocol analysis without
discussing service implementation and com-
pliance.

Correspondingly, the discussion has also
emphasized the need for operators that iden-
tify these time constraints resulting from the
joint compatibility analysis of the two pro-
tocols, as shown earlier.

3.2 Replaceability in timed proto-

cols

We now turn our attention to the replace-
ability problem. We will provide below less

start s0 s5 s6 s1 s7 s8

s2 s9 s10 s3 s11 s4
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x(+) a(−)
b(+)

c(+)
b(+)

i2: 10min

i1: 10min

a(−)

b(+) i3: 15min

b(+)
i4: 5min

(P)

x(+) a(−)
b(+)

i: 35min

(P’)

Figure 4: A protocol P that can replace P′.

examples as the previous section has already
given an indication of the issues that can
arise.

Example 9 Consider protocols P and P′

depicted on Figure 4. Again, let’s have a
look at the states that are implicitly reach-
able from s0 and s′0 to compute the temporal
availabilities of the operations:

(P)







a : [0min, 10min], [20min, 35min]
b : [0min, 40min]
c : [10min, 20min]

(P′)







a : [0min, 35min]
b : [0min, 35min]
c : ∅

Protocol P can handle messages x, a and b
from a client that is compatible with P′ by
looking at the temporal constraints. How-
ever P has an extra operation c. This oper-
ation being a message reception, it does not
cause a problem. Indeed, a requester or P′

does not know about c since P′ does not sup-
port it. Thus, they will never attempt to fire
it. Finally, P can well replace P′ by looking
at s0 and s′0.

In summary, similarly to compatibility
analysis, the introduction of time also em-
phasizes the need for a new replaceabil-
ity class, called time-dependent replaceabil-
ity. Protocol P can replace P′ in a time-
dependent manner if P can replace P′ pro-
vided that clients send messages following
certain time constraints. Again, this is a
case of partial replaceability, and just like
partiality, dependence on time is a ”dimen-
sion” that applies to the other replaceability
classes (that is, we can have time-dependent



replaceability with respect to a client, time-
dependent subsumption, and the like). In
addition, users would benefit from opera-
tors that return the time constraints that
define the time-dependent replaceability, to
help them evaluate if these are acceptable or
if the service should be modified to achieve
replaceability independently of time issues.

4 Timed protocol manage-

ment operators

In this section, we revisit the operators that
we have defined for the business protocols
[9], extending them to cater with tempo-
ral abstractions. Then we show how these
operators can be used to characterize var-
ious timed compatibility and replaceability
classes. Algorithms implementing the pro-
posed operators are described in the next
section.

4.1 Timed compatible composi-

tion

The operator timed compatible composition
allows to characterize possible interactions
between two timed business protocols, that
of a provider and that of a requester. The
resulting timed protocol describes all the
timed interaction traces of the considered
protocols and therefore characterizes the
possible conversations that can take place
between the requester and the provider.
This operator, denoted as ‖TC, takes as in-
put two timed protocols and returns another
one called a (timed) compatible composition
protocol. Note that polarity of messages is
not defined in compatible composition proto-
cols since such protocols describe interaction
traces.

Definition 6 (Timed compatible com-
position)

Let P1 and P2 be two timed protocols. A
protocol P is a timed compatible composition
of P1 and P2, noted P = P1 ‖TC P2, iff
Tr(P) is the set of all the timed interaction
traces of P1 and P2.

i: 3min

c(+)
a(−) b(+)

a(−) b(+) i: 3min c(+)
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Figure 5: Protocols obtained by applying
operators.

The previous definition gives the seman-
tics of the timed compatible composition op-
erator. Given two timed protocols, an algo-
rithm that computes their compatible com-
position is described in the next section.

As an example, protocol Pc depicted on
Figure 5 is obtained by P ‖TC P′ where P and
P′ are the protocols depicted on Figure 3.

Let P = P1 ‖TC P2 be a timed compatible
composition protocol. We note by [P]P1

the
protocol obtained by defining the polarity
of the messages in P similarly to those of
P1 (i.e., for each message m in P, we define
Polarity([P]P1

,m) = Polarity(P1,m)).

4.2 Timed intersection

The timed intersection operator allows the
computation of the largest common part be-
tween two timed protocols. The operator,
denoted as ‖TI, takes as input two timed
business protocols and returns a timed busi-
ness protocol that describes the set of timed
traces that are common to the two proto-
cols. The resulting protocol is called a timed
intersection protocol.

Definition 7 (Timed intersection)
Let P1 and P2 be two timed protocols. A

protocol P is a timed intersection protocol
of P1 and P2, noted P = P1 ‖TI P2, iff
Tr(P) = Tr(P1) ∩ Tr(P2).

The protocol Pi depicted on Figure 5 is
obtained by P′ ‖TI P′′ where P′ and P′′ are
the protocols depicted on Figure 3.

4.3 Timed difference

While the timed intersection operator iden-
tifies common aspects between two proto-



cols, the timed difference operator, denoted
as ‖TD, emphasizes their differences. This
protocol takes as input two timed business
protocols P1 and P2 and returns a timed
business protocol (the timed difference pro-
tocol) whose purpose is to describe the set of
all the timed traces compliant with P1 that
are not compliant with P2.

Definition 8 (Timed difference)

Let P1 and P2 be two timed business pro-
tocols. A timed protocol P is a timed dif-
ference protocol of P1 and P2, noted P =
P1 ‖TD P2, iff Tr(P) = Tr(P1) \ Tr(P2)

The protocol Pd depicted on Figure 5 is
obtained by P′′ ‖TD P′ where P′ and P′′ are
the protocols depicted on Figure 3.

4.4 Characterizing compatibility

and replaceability classes

We recall that a protocol P1 is partially
compatible with a protocol P2 if there is at
least one possible conversation that can take
place among two services supporting these
protocols, while protocol P1 is fully com-
patible with P2 if all the executions of P1

can interoperate with P2. We give below a
formal definition of these classes.

Definition 9 Let P1 and P2 be two timed
business protocols.

• P1 is partially timed compatible with
P2, noted PT-Compat(P1,P2), iff there
exists at least one timed interaction
trace of P1 and P2.

• P1 is fully timed compatible with P2,
noted FT-Compat(P1,P2), iff ∀τ ∈
Tr(P1), then Unp(τ) is a timed inter-
action trace of P1 and P2.

Based on the operators introduced above,
the following lemma gives necessary and suf-
ficient conditions to identify the compatibil-
ity level between two protocols.

Lemma 1 Let P1 and P2 be two timed busi-
ness protocols.

1. PT-Compat(P1,P2) iff P1 ‖TC P2 is not
an empty protocol (i.e., the set of its
final states is not empty).

2. FT-Compat(P1,P2) iff
[

P1 ‖TC P2

]

P1

∼=T P1.

4.5 Replaceability classes

We present first formal definitions of timed
replaceability classes.

Definition 10 Let P1 and P2 be two timed
business protocols.

• P1 subsumes P2 w.r.t. replaceabil-
ity, noted TSubs(P1,P2), iff for every
timed interaction trace Unp(τ) of P2

and any timed protocol Pc such that
τ ∈ Tr(P2) then τ ∈ Tr(P1). Note
that, in this case P1 can be transpar-
ently used instead of P2.

• P1 and P2 are equivalent w.r.t. re-
placeability, noted TEquiv(P1,P2), iff
Subs(P2,P1) and Subs(P1,P2).

• Protocol P1 can replace P2 with re-
spect to a client protocol PC , denoted
as TRepl[PC ](P1,P2), if for every timed
interaction trace Unp(τ) of P2 and PC

such that τ ∈ Tr(P2), then τ ∈ Tr(P1).

• Let PR be a protocol. Protocol P1

can replace P2 with respect to a role
PR, denoted as TReplRole[PR](P1,P2),
if for every complete interaction trace
Unp(τ) of P2 and any protocol PC

the following conditions hold: if τ ∈
Tr(PR) then τ ∈ Tr(P1). In this case,
P1 can transparently replace P2 when
P2 behaves as PR.

The following lemma characterizes the re-
placeability levels of two given protocols us-
ing the operator introduced in previous sec-
tions.

Lemma 2 Let P1, P2, PC and PR be timed
business protocols.

1. TSubs(P1,P2) iff P2 .T P1.



2. TEquiv(P1,P2) iff P1
∼=T P2.

3. TReplPC
(P1,P2) iff

[

PC ‖TC P2

]

P2

.T

P1 (or equivalently iff PC ‖TC (P2 ‖TD

P1) is an empty protocol).

4. TReplRole[PR](P1,P2) iff PR ‖TI

P2 .T P1.

5 Algorithms

The previous section, mainly lemma 1 and 2,
stresses the need of operators to effectively
handle timed protocol compatibility and re-
placeability analysis. We focus our attention
now on the implementation of the operators.
As illustrated in the previous examples (c.f.,
section 3), one difficulty for defining such
formal tools comes from the fact that the
presence of timed transitions makes many
information about the availability of opera-
tions at a given state as well as their timing
constraints implicit (i.e., hidden) in proto-
col definitions. In this section, we first de-
scribe an algorithm that allows to compute
the temporal availability of operations at a
given state. Our argument is that, with this
knowledge at hands, it will be easier to de-
vise the needed algorithms. We then present
algorithms that implement timed compati-
ble composition and timed difference as well
as a timed subsumption test and give their
computational complexity. Note that, a
timed intersection algorithm can be easily
derived from the compatible composition al-
gorithm.

5.1 Expliciting state operations

The last sections have highlighted the fact
that the set of operations available from a
given state is not limited to the ones where
it is the source state. Indeed, implicit tran-
sitions can enable the access to the opera-
tions of another state, thus adding new op-
erations or disabling existing ones. For in-
stance, in the protocol P of Figure 4, the op-
eration a is available during the time inter-
vals [0min, 10min] and [20min, 35min] after
an execution of a service enters the state s0.

This information is very useful in order to
be able to analyse and compare timed proto-
cols. This leads us to the definition of a data
structure called time-state space that will be
used to describe the informations about all
the operations available at a given state. It
should also be noted that it is of particular
importance to keep trace of the target states
in each case. For example, after entering the
state s0, we should record the fact that if the
operation a of the protocol P is invoked dur-
ing the interval [0min, 10min] the the ser-
vice will move to the state s5 while if it is
invoked during the interval [20min, 35min]
then the service will move to the state s9

of the protocol P (i.e. we need to keep
trace of the pairs ([0min, 10min], s5) and
([20min, 35min], s9)).

We present here the formal definition of a
time-state space structure.

Definition 11 (Time-state space)

Let P = (S, s0,F , M,R) be a timed busi-
ness protocol.

• A time-state tuple is a pair ([t1, t2], s)
such that t1, t2 ∈ Q≥0, with t1 ≤ t2,
and s ∈ S is a state of P.

• A time-state space T is a set of time-
state tuples that verify the following
condition: ∀([ti, tj], s), ([tl, tk], s) ∈ T
we have tj < tl or ti > tk.

The structure of a time-state space al-
lows us to describe the operations available
at a given state of a protocol, their associ-
ated timing constraints as well as the tar-
get states for each possible operation invo-
cation. Continuing with the previous ex-
ample, the time-space {([0min, 10min], s4),
([20min, 35min], s8)} describes the tempo-
ral availability of the operation a at the state
s0 of protocol P.

It should be noted that, from the defi-
nition above, a time-state space does not
allow overlapping time intervals between
time-state tuples that have same target
state. If such a case occurs, the tuples are
merged. For example, the time-state tuples



Algorithm 1: The τ -closure algorithm.
Data: A protocol P = (S, s0,F , M,R) and a state s ∈ S.
Result: τ -closure(s), T -Availability(s, me), for each message me ∈ outpute(s).
begin

upperBound := +∞ ;1

foreach s ∈ S do

if ∃s′ ∈ S |R(s, s′,mi) ∧ mi ∈ Mi then upperBound := T ime(s,mi) ;
foreach me ∈ outpute(s) do

initAvailability(s, me) := {([0, upperBound], s′)} (s′ | R(s, s′, me)) ;

upperBound := +∞ ;2

τ -closure(s) := {s}, last := s, elapsed := 0, temp := ∅ ;
foreach me ∈ Me do T -Availability(s, me) := ∅ ;3

while temp 6= τ -closure(s) do
temp := τ -closure(s) ;
if ∃s′ ∈ S |R(last, s′,mi) ∧ mi ∈ Mi then

last := s′ ;
elapsed := elapsed + T ime(last, mi) ;
τ -closure(s) := τ -closure(s) ∪ {s′} ;
foreach me ∈ outpute(s′) do

T -Availability(s, me) := T -Availability(s, me) ∪T Delay(initAvailability(s′ ,me), elapsed)
;

4

return τ -closure(s), T -Availability(s, me) ∀me ∈ outpute(s) ;
end

([0min, 10min], s4) and ([5min, 35min], s4)
cannot appear together in a same time-state
space but will be merged into one tuple:
([0min, 35min], s4).

When considering a timed business pro-
tocol, applying time-state space computa-
tions from the various states allows to rea-
son on a protocol which contains the explicit
messages with their effective temporal win-
dows. This explicited won’t be further de-
tailed for space reasons but it is obvious that
it is equivalent to a timed business protocol
and the mapping from one to the other is
straightforward.

We introduce some operations that facil-
itate the manipulation of time-state tuples
and spaces.

Definition 12 (Operations on time-state
spaces)

• Time membership (∈T )

We say that a time instant t ∈ Q≥0

belongs to a time-state space T , noted
t ∈T T , iff there exists a time-state
tuple ([ti, tj ], s) ∈ T such that t ∈
([ti, tj ], s) (i.e., ti ≤ t ≤ tj). We
also say that a temporal interval [ta, tb]

(with ta, tb ∈ Q≥0) belongs to a time-
state space T , noted [ta, tb] ∈T T ,
iff there exists a time-state space tuple
([ti, tj ], s) ∈ T such that ti ≤ ta and
tb ≤ tj.

• Delaying time-state spaces (Delay)

This operation introduces a delay in the
time intervals of time-state space. Let
T be a time-sate space and t ∈ Q≥0

a positive real number. We define the
function Delay(T , t) = {([ti + t, tj +
t], s),∀([ti, tj ], s) ∈ T }.

• Merging a set of tuples (Merge)

Let S = {([t1, t
′
2], s1), . . . , ([tn, t′n], sn)}

be a set of tuples. We note by
Merge(S) the operation that allows to
merge in S all the time-space tuples that
have overlapping time intervals and
similar target states. More precisely,
the set Merge(S) consists in the set
S in which we recursively replace with
the tuple ([Min(ti, tl),Max(t′j , t

′
k)], s)

any pair of elements ([ti, t
′
j ], s) and

([tl, t
′
k], s′) that verify: s = s′ and ei-

ther tl ≤ ti ≤ t′k or tl ≤ t′j ≤ tk.

• Union (∪T )



The union of two time-state spaces T1

and T2, noted T1 ∪T T2 is a time-state
space T obtained as follows: T =
Merge(T1 ∪ T2). Hence, time-state
spaces are closed under the union op-
eration.

Let us now consider the problem of com-
puting temporal availabilities. The algo-
rithm 1, called τ -closure algorithm, enables
to achieve such a task. Given a protocol
P and a state s in P, the algorithm first
computes, for each state in P, the initial
availabilities of messages as explicitly de-
fined in P (lines 1 to 2). Note that, if
no implicit transition is defined in a given
state, then explicit messages enabled from
this state will have +∞ as an upper bound
time constraint. Then, the remaining part
of the algorithm (lines 3 to 4), consists in
computing a transitive closure of the state s
(the τ -closure) with respect to implicit tran-
sitions and incrementally updating the T-
Availability values for the messages that can
be fired from this state. Please note that,
the algorithm uses a function outpute which
returns the set of explicit messages that can
be fired from a given state.
Complexity analysis. Let n and m be,
respectively, the number of states and the
number of explicit transitions in the input
timed protocol. The τ -closure algorithm
runs in time O(n ∗ m).

5.2 Timed compatible composi-

tion and timed intersection

Algorithm 2 implements the timed compat-
ible composition operator. The initial state
of the resulting protocol is obtained by com-
bining the initial states of the input pro-
tocols (line 2). The final states are ob-
tained by combining the states (si, sj) of
the input protocols such that si (respec-
tively, sj) is either a final state or it can
reach automatically a final state (line 4).
Intermediary states of the resulting proto-
col are constructed by composing the input
protocols messages of the input protocols
that have same names but opposite polari-

ties and overlapping time intervals (foreach

loop that starts at line 1). Also to ensure
correctness of the resulting protocol, there
is an additional pruning step which is not
detailed here. This step consists in remov-
ing from the resulting protocol all the states
that are not reachable from the initial state
as well as the states that cannot lead to a
final state.

Note that, an algorithm for implementing
the timed intersection operator can be easily
deduced from Algorithm 2 as the two oper-
ators differ only in how messages polarity is
taken into account.
Complexity analysis. Let n and m be re-
spectively the maximal number of states and
the maximal number of explicit transitions
in the input protocols. Algorithm 2 runs in
time O(n2m2).

5.3 Timed difference

Algorithm 3 implements the timed differ-
ence operator. It is designed in the same
spirit as the previous algorithm (i.e., it uses
a layered approach to construct the resulting
protocol). When exploring pairs of states
from the input protocols P1 and P2, algo-
rithm 3 identifies the outgoing messages of
P1 that do not match with the outgoing
messages of P2. Two cases can occur: (i)
both input protocols have the same outgo-
ing message with similar polarity (line 1),
or (ii) P1 has an outgoing message that can-
not be fired from the corresponding state of
P2 (line 3). In case (i), an outgoing mes-
sage, say m, will be added to the result-
ing timed difference protocol with a tem-
poral availability that is enabled in P1 but
not in P2. Such an availability is com-
puted by intersecting the temporal avail-
ability of the message m in P1 with the
complement of the temporal availability of
m in P2. This operation is abbreviated in
the algorithm as illustrated by the follow-
ing example: {[0,+∞[} ∩ {[3, 4], [5, 6]} =
{[0, 3[, ]4, 5[, ]6,+∞[}. In case (ii), the mes-
sage from P1 is added with the same tempo-
ral availabilities as in P1. In this case, the



Algorithm 2: Timed compatible composition Algorithm.
Data: Two protocols P1 = (S1, s1

0
,F1, M1,R1) and P2 = (S2, s2

0
,F2, M2,R2).

Result: A composition protocol expressed as a set of states S, an initial state s0, a set of final states F and
for each s ∈ S, a set T -Availability(s, me) ∀me ∈ outpute(s)

begin

Candidates := {(s1

0
, s2

0
)}, S := ∅, s0 = (s1

0
, s2

0
), F := ∅ ;

while ∃(s1, s2) ∈ Candidates do1

cur1 := s1, cur2 := s2 ;
S := S ∪ {(cur1, cur2)} ;2

foreach me ∈ outpute(cur1) ∩ outpute(cur2) | Polarity(P1 , me) 6= Polarity(P2 ,me) do3

foreach ([t1i , t1j ], s1), ([t2
l
, t2

k
], s2) ∈

T -Availability(cur1, me) × T -Availability(cur2, me) | max(t1i , t2
l
) ≤ min(t1j , t2

k
) do

tmin := max(t1i , t2
l
), tmax := min(t1j , t2

k
) ;

T -Availability((cur1 , cur2), me) :=
T -Availability((cur1 , cur2), me) ∪ {([tmin , tmax], S(s1, s2))} ;
Candidates := Candidates ∪ {(s1, s2)} ;

Candidates := Candidates \ S ;
foreach (s1, s2) ∈ S |τ -closure(s1) ∩ F1 6= ∅ ∧ τ -closure(s2) ∩ F2 6= ∅ do4

F := F ∪ {(s1, s2)}

return S, s0, F and for each s ∈ S, a set T -Availability(s, me) ∀me ∈ outpute(s) ;
end

Algorithm 3: A timed difference algorithm.

t
Data: Two protocols P1 = (S1, s1

0
,F1, M1,R1) and P2 = (S2, s2

0
,F2, M2,R2).

Result: A difference protocol P expressed as a set of states S, an initial state s0, a set of final states F and
for each s ∈ S, a set T -Availability(s, me) ∀me ∈ outpute(s)

begin

Candidates := {(s1

0
, s2

0
)}, S := ∅, s0 = (s1

0
, s2

0
), F := ∅ ;

while ∃(s1, s2) ∈ Candidates do

cur1 := s1, cur2 := s2 ;
S := S ∪ {(cur1, cur2)} ;
forall m ∈ M

1 | R1(cur1, s1

1
,m) do

Let {[ti, tj ]} (i ≤ j ∈ Q≥0) such as ∃([ti, tj ], s1

1
) ∈ T -Availability(cur1 ,m) ;

Polarity(P , m) := Polarity(P1 ,m) ;
if R2(cur2, s2

1
, m) ∧ Polarity(P1 ,m) = Polarity(P2 , m) then1

Let {[t′i, t
′
j ]} (i ≤ j ∈ Q≥0) such as ∃([t′i, t

′
j ], s

2

1
) ∈ T -Availability(cur2 ,m) ;

Candidates := Candidates ∪ {(s1

1
, s2

1
)} ;

T -Availability((cur1 , cur2), m) := T -Availability((cur1 , cur2), m) ∪ {([tk, tl], (s
1

1
, s2

1
))} for2

each [tk, tl] ∈ {[ti, tj ]} ∩ {[t′
i
, t′

j
]} ;

else3

Candidates := Candidates ∪ {(s1

1
, µ)} ;

T -Availability((cur1 , cur2), m) := T -Availability((cur1 , cur2), m) ∪ {([tk, tl], (s
1

1
, µ))} for

each [tk, tl] ∈ {[ti, tj ]} ;

Candidates := Candidates \ S ;
foreach (s1, s2) ∈ S |τ -closure(s1) ∩ F1 6= ∅ ∧ τ -closure(s2) ∩ F2 = ∅ do

F := F ∪ {(s1, s2)}

return S, s0, F and for each s ∈ S, a set T -Availability(s, me) ∀me ∈ outpute(s) ;
end



target state of this transition in the result-
ing protocol is made of the target state of P1

and a new state, called µ. The rest of the
algorithm works in a similar manner as the
other algorithms with the difference that fi-
nal states of the resulting protocol are made
of pairs of final states of P1 and either non
final states of P2 or µ states.
Complexity analysis. Let n and m be re-
spectively the maximal number of states and
the maximal number of explicit transitions
in the input protocols. Algorithm 3 runs in
time O(n2m2).

5.4 Timed subsumption algorithm

Algorithm 4 implements a timed subsump-
tion test. The idea of this algorithm is to
check if the initial state of P1 is simulated2

by the initial state of P2. A state s of P1

is simulated by a state s′ of P2 if for every
outgoing message m in s there is: (i) the
same outgoing message m in s′ with simi-
lar polarity and a similar or wider temporal
availability, and (ii) the target state of m in
P1 is simulated by the target state of m in
P2. Moreover, if s is a final state then so
must be s′.
Complexity analysis. Let n and m be re-
spectively the maximal number of states and
the maximal number of explicit transitions
in the input protocols. Algorithm 4 runs in
time O(n3m).

6 Discussion and conclusion

We now briefly compare this work with prior
state of the art and summarize our contri-
butions. Several ongoing efforts recognize
the need to support the explicit descrip-
tion of business protocols in web services.
In the standardization arena, the Business
Process Execution Language for Web Ser-
vices (BPEL), the Web Services Conversa-
tion Language (WSCL) and the Web Ser-
vice Choreography Interface (WSCI), are

2In fact, our algorithm uses a kind of graph sim-
ulation test in which the simulation relation [14] is
extended to cater for temporal constraints.

examples of of specifications that feature
support for describing service conversations
[16]. Our work provides complementary
contributions to these efforts. We focus on
abstracting, analyzing, and managing Web
services protocols.

As mentioned before, several ongoing ef-
forts in the area of Web services recog-
nize the importance of high level model-
ing and analysis of service protocols (e.g.,
[9, 10, 11, 13, 17, 19]). In terms of protocol
description, the existing models do not ex-
plicitly take important service abstractions
such as timed transitions into account. In
terms of protocols analysis, mechanisms are
proposed to compare verify protocols com-
patibility and replaceability. Similar ap-
proaches for protocols compatibility and re-
placeability exist in the area of component-
based systems [12, 20]. In the above ap-
proaches, the proposed techniques do not
cater for timed business protocols.

There are some similarities between our
work and timed automata [2], a specification
formalism which was introduced to enable
explicit modeling of time for reactive sys-
tems. Several formal aspects such as reach-
ability, language inclusion and equivalence
has been investigated for timed automata
[3]. It should be noted that timed automata
can be extended to provide formal semantics
for our model as, for example, in the original
timed automata model messages polarity is
not supported.

In this paper, we build upon our earlier
work on service protocols modeling, analy-
sis, and management [5, 9] to cater for tem-
poral abstractions in business protocols. We
can summarize our contributions in terms of
protocols modeling, analysis, and manage-
ment:

• We motivate the need for modeling of
timed protocols and for the introduc-
tion of formal models and algebras for
protocol modeling and management

• We proposed a state-machine model
for representing timed protocols. This
model is simple and has a formal se-



Algorithm 4: A timed subsumption algorithm.
Data: Two protocols P1 = (S1, s1

0
,F1, M1,R1) and P2 = (S2, s2

0
,F2, M2,R2).

Result: true if P1 .T P2, false otherwise.
begin

layer1 := {s1

0
}, layer2 := {s2

0
}, done := ∅ ;

while layer1 6= ∅ do

foreach s1 ∈ layer1 do
found := false ;
foreach s2 ∈ layer2 do1

if outpute(s1) * outpute(s2) then continue (1) ;
foreach me ∈ outpute(s1) do

Let (i1, t1) := T -Availability(s1 , me) and (i2, t2) := T -Availability(s2 , me) ;
if (i1 , t1) /∈T (i2, t2) or (t1 ∈ F1 ∧ t2 /∈ F2) or (t1 /∈ F1 ∧ t2 ∈ F2) then continue2

(1) ;

found := true, done := done ∪ {s1} ;

if found = false then return false ;3

done := done ∪ {s1} ;

layer1 := succ(layer1) \ done, layer2 := succ(layer2) ;

return true ;
end

mantics. Both simplicity and formal
semantics are necessary to provide ef-
fective protocol analysis techniques.

• We provide a formal characterization
of the notions of compatibility and re-
placeability for timed business proto-
cols, emphasizing the subtle issues that
may arise in performing this kind of
analysis and discussing the need for new
replaceability and compatibility classes.

• We proposed a number of operators for
analyzing and managing timed business
protocols.

Finally, we mention that the work pre-
sented in this paper part of a larger frame-
work supported by a CASE tool, partially
implemented, that manages the entire ser-
vice development lifecycle. Our objective
of this framework is to provide a compre-
hensive methodology and platform that can
facilitate large-scale interoperation of Web
services and substantially reduce the service
development effort.
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