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Abstract. We deal with the problem of automated analysis of web service
protocol compatibility and replaceability in presence of timing abstrac-
tions. We first present a timed protocol model for services and identify
different levels of compatibility and replaceability that are useful to sup-
port service development and evolution. Next, we present operators that
can perform such analysis. Finally, we present operators properties by
showing that timed protocols form a new class of timed automata, and we
briefly present our implementation.

1 Introduction

Service-oriented architectures (SOAs) and web service technologies are emerging
computing paradigm for the development and integration of distributed applica-
tions [1]. They are based on the notion of services, which are loosely-coupled ap-
plications interfaces accessible via a programmatic API relying on open standards
(e.g., XML, HTTP or SOAP). The idea behind loose coupling is that services can
be made generally accessible to a community of users and clients, as opposed
to being specifically developed for certain clients, as it was the case in conven-
tional, CORBA-style integration where clients and services were often developed
concurrently and by the same team. This capability comes at a price: the need of
providing fairly detailed service descriptions, so that (i) at design time, developers
know how to write applications that can correctly interact with the service, and
(ii) at deployment or run time, it is possible to identify if a client can correctly
interact with a service.

Today, service descriptions typically include the interface definition, the transport-
level properties (both specified in WSDL), and business protocol definitions, that
is, the specification of possible message exchange sequences (conversations) that



are supported by the service [2]. Protocols can be specified using WS-BPEL (Web
Services Business Process Execution Language) or any of the many other for-
malisms developed for this purpose (e.g., [2,3]). Providing such descriptions only
solves part of the problem. To facilitate service development and interoperability
there is the need for formal methods and software tools that allow the automated
analysis of service descriptions to (i) identify which conversations can be carried
out between two services, understand mismatches between protocols and, if pos-
sible, create adapters to allow interactions between incompatible services (called
compatibility analysis), and (ii) manage service evolution, that is, understand if a
new version of a service protocol is compatible with the intended clients (called
replaceability analysis).

Such a need is widely recognized and many approaches have been developed,
including some by the authors. In particular, in our previous work we developed a
simple but expressive business protocol model based on state machines, an algebra
for business protocol analysis, and a set of operators to compare and manipulate
protocols and that form the basis for compatibility and replaceability analysis [4].
The operators have been implemented within ServiceMosaic [5], a CASE tool
environment that enables the model-based design, development and management
of Web services.

While previous approaches provide significant contributions to protocol anal-
ysis (and, in general, to service specification analysis), little work has been done
in the context of timed protocols, that is, protocols that include time-related prop-
erties. This limitation is significant: time is an essential ingredient of any real-life
protocol specification. There are countless examples of behaviors that involve tim-
ing issues in any kind of protocol [2], from business protocol for web services (e.g.,
see the RosettaNet PIPs), to interactions between traditional web-based services
and users (see e-commerce web sites such as Travelocity or Amazon), to lower
level protocols such as TCP. Time-related behaviors range from session timeouts
to “logical” deadlines with different kinds of behaviors (e.g., seats reserved on a
flight needs to be paid within n hours otherwise they are released). In [2], we have
identified extensions to protocol models suitable for representing timing aspects.
The extensions are based on an analysis of existing protocols so that we could
identify a modeling framework that is simple but expressive. More specifically, we
identified the need for representing two kinds of temporal constraints in protocol
descriptions: (i) time intervals during which an operation can be invoked and (ii)
deadline expirations. Such kinds of constraints can also model timing properties
of languages such as WS-BPEL and RosettaNet. The introduction of time aspects
adds significant complexity to the protocol analysis problem. Indeed, many for-
mal models enabling explicit representation of time exist (e.g., timed automata,
timed petri-nets), all showing extreme difficulties to handle algorithmic analysis
of timed models. For example, timed automata, which are today considered as
a standard modeling formalism to deal with timing constraints, suffer from un-
decidability of many problems such as language inclusion and complementation
that are fundamental to system analysis and verification tasks [6]. Such problems
have been shown to be very sensitive to several criteria (e.g., density of the time



axis, type of constraints, presence of silent transitions) This paper extends our
previous work in the following directions and makes the following contributions:

1. We formally define timed protocols, an extension of business protocols that is
suitable to represent both time intervals and deadline expirations constraints.

2. We define a framework for timed protocol analysis, introducing fine-grained
classes to study different degrees of compatibility and replaceability among
protocols.

3. We define an algebra for protocol analysis and management by defining op-
erators that can manipulate and analyze timed protocols and that can be
used to characterize the various compatibility and replaceability classes. We
see this work as being inspired, at least conceptually, by work done over the
last 30 years in databases, leading to generic abstraction techniques such as
relational algebras that eventually generated the widespread adoption of the
relational model. We argue that an algebra for protocol analysis can bring to
service-oriented computing similar benefits to what relational algebra brought
to relational databases.

4. We establish a semantic-preserving mapping from timed protocols to a new
class of timed automata [7] with a restricted form of ε transitions (i.e., "unob-
servable" or silent transitions). Based on this mapping, we reuse and extend
existing results in timed automata theory to derive decidability results for our
timed protocol operators. The obtained result is interesting by itself because
timed protocols lead to an innovative class of timed automata that includes ε
transitions that strictly increase the expressiveness of the automata (i.e., they
cannot be removed without a loss of expressiveness) and despite this fact, this
class still exhibits a deterministic behavior. Especially, the complementation
problem is decidable for this class. To the best of our knowledge, this is the
first identified class of timed automata displaying such a feature.

Due to a lack of space, proofs and additional technical details regarding this
work are omitted from this paper but are given in [8] which contains them in its
appendix.

2 Timed Protocol Modeling

This section introduces first informally and then formally the model of timed
business protocols which extends business protocols [4] with timing-related ab-
stractions.

2.1 Extending Business Protocols with Temporal Abstractions

We built our model upon the traditional state-machine formalism, which is com-
monly used to model protocols and, more generally, to model the external be-
haviors of systems, due to the fact that they are simple and intuitive. In the
model, states represent the different phases that a service may go through during
its interaction with a requester. Transitions can be associated with a message



and/or a constraint. Transitions associated with a message must also indicate the
message polarity, that denotes whether the message is incoming (plus sign) or
outgoing (minus sign). They are triggered when the associated message is sent
(or received, depending on the polarity). A message corresponds to the invoca-
tion of a service operation or to its reply. Hence, each state identifies a set of
outgoing transitions, and therefore a set of possible messages that can be sent or
received when the conversation with a client is in that state. For instance, the
protocol depicted in Figure 1, inspired from the Ford Credit web portal, speci-
fies that a financing service is initially in the Start state, and that clients begin
using the service by sending a login message, upon which the service moves to
the Logged state (transition (login(+)). In the figure, the initial state is indi-
cated by an unlabeled entering arrow without source while final (accepting) states
are double-circled. Furthermore, the figure shows that the sequence of message
login(+) ·selectV ehicle(+) ·estimatePayment(+) is a conversation supported by
the protocol, while the conversation fullCredit(+) · selectV ehicle(+) is not. By
defining constraints on the ordering of the messages that a web service accepts, a
protocol makes explicit to clients how they can correctly interact with a service
without generating errors due to incorrect sequencing of messages.
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Fig. 1. A timed protocol of an online financing services.

Constraints can also be associated to transitions. In this paper we focus on
timing abstractions, as we have identified two kinds of constraints that are often
needed in practice:



– C-Invoke constraints specify a time window within which a given transition
can be fired. Outside the window, the transition is disabled (exchanging the
message results in an error).

– M-Invoke constraints specify when a transition is automatically fired.

M-Invoke constraints can only be associated with implicit (as opposed to ex-
plicit) transitions, which are used to model transitions that can occur without
an explicit invocation by requesters. Implicit transitions are analogous to the so-
called silent or ε transitions in automata theory [9]. We assume that implicit
transitions are associated with an empty message noted ε.

We use the term timed protocol to denote a business protocol whose definition
contains such temporal abstractions. Timed protocols must be deterministic, as
the client always needs to be able to determine in which state the service is, else
much of the purpose of the protocol specification is lost.

Continuing with the example, the financing service may need to specify that
a full credit application is accepted only if it is received 24 hours after a payment
estimation has been made. This behavior is specified by tagging the transition
T14 : fullCredit(+) with a time constraint C-Invoke(T13 ≤ 24h). This constraint
indicates that transition T14 can only be fired within a time window [0h, 24h]
after the execution of the transition T13. The implicit transition T10, depicted in
the figure using a dotted arrow, is associated with constraint M-Invoke(T8 = 30d)
to specify that once a pre-approval application is approved (i.e., after transition
T8 : approved(−) is fired which makes a service entering state CreditApproved,
a client has 30 days to use the credit, after that the credit decision expires. Note
that, the presence of an implicit transition at a given state affects the timing
constraints of the other explicit transitions that can be fired from this state. In
our example, the presence of the implicit transition T10 implies that transition
T9 : selectV ehicle(+) can only be executed within a time window [0d, 30d] after
the service has entered state CreditApproved.

2.2 Formalization

To formally define timed protocols, we first introduce the types of constraints
used in this paper. Let X be a set of variables referring to transition identifiers,
i.e., if r is a transition then xr ∈ X is variable referring to this transition. We
consider the following two kinds of time constraints defined over a set of variables
X :

– C-Invoke(c) with c defined as follows: c ::= x op k | c∧c | c∨c with op ∈ {=, 6=
, <,>,≤,≥}, x ∈ X and k ∈ Q≥0, where Q≥0 denotes the set of nonnegative
rational numbers.

– M-Invoke(c) is also defined with x ∈ X and k ∈ Q≥0 as above but with
the restriction that c ::= x = k [∧(x 6= k | c ∧ c)] (it is an equality with an
optional conjunction of equalities and inequalities).

We can now introduce a formal definition of timed protocols.



Syntax.

– S is a finite set of states, with s0 ∈ S being the initial state.
– F ⊆ S is the set of final states. If F = ∅, then P is said to be an empty

protocol.
– M = Me ∪{ε} is a finite set of messages Me augmented with the empty message
ε. For each message m ∈ Me, we define a function Polarity(P,m) which will
be positive (+) if m is an input message in P, and negative (−) if m is an
output message in P.

– X = {xr | ∃r ∈ R} is a set of variables defined over the set of transitions R.
– C is a set of time constraints defined over a set of variables X . The absence

of a constraint is interpreted as a constraint with the value of true.
– R ⊆ S2 × M × C is a finite set of transitions. Each transition (s, s′,m, c)

identifies a source state s, a target state s′, a message m and a constraint c.
We say that the message m is enabled from a state s. When m = ε, c must
be a M-Invoke constraint. Otherwise c must be either a C-Invoke constraint
or true.

In the sequel, we use the notationR(s, s′,m, c) to denote the fact that (s, s′,m, c) ∈
R. To enforce determinism, we require that a protocol has only one initial state,
and that for every state s and every two transitions (s, s1,m1, c1) and (s, s2,m2, c2)
enabled from s, we have eitherm1 6= m2 or c1∧c2 ≡ false. To enforce preemption
of M-Invoke constraints over C-Invoke constraints, it is assumed that for each
state that offers implicit transitions, the explicit transitions satisfy C-Invoke con-
straints as follows. They must satisfy the conjunction of all the Ti < ki constraints
where Ti = ki appears in a M-Invoke constraint. Otherwise, an explicit transition
could still be fired after all the implicit transitions have expired. Finally, we do
not allow cycles only made of implicit transitions as the system would enter an
infinite loop.

Variable interpretation. To formally define the semantics of timed protocols we
introduce the notion of variable valuation. We consider as a time domain the set
of non-negative reals R≥0. Let X be a set of variables with values in R≥0. A
(variable) valuation V : X → R≥0 is a mappings that assigns to each variable
x ∈ X a time value V(x). We note by Vt the variable valuation at an instant
t. At the beginning (i.e., instant t0 = 0) we assume that all the variables are
set to zero, i.e., Vt0(xr) = 0,∀xr ∈ X . Then, a variable valuation at a time
tj , is completely determined by a protocol execution. Consider for example an
execution σ = s0 · (m0, t0) · s1 . . . sn−1.(mn−1, tn−1) · sn of a protocol P and let r
be a transition in R. The valuation of a variable xr at time tj , with 0 < j ≤ n, is
defined as follows:
Vtj (xr) =

{
0, if r = (sj−1, sj ,mj−1, cj−1)
Vtj−1(xr) + tj − tj−1, otherwise

Given a variable valuation V and a constraint C-Invoke(c) (respectively, M-Invoke(c)),
we note by c(V), the constraint obtained by substituting each variable x in c by
its value V(x). A variable valuation V satisfies a constraint C-Invoke(c) (respec-
tively, M-Invoke(c)) iff c(V) ≡ true. In this case, we write V |= C-Invoke(c)
(respectively, V |= M-Invoke(c)).



Protocol semantics. We define the semantics of timed protocols using the notion
of timed conversation (this is inspired from timed words in [7]).

Let P = (S, s0,F , M,R, C) be a timed protocol. A correct execution (or simply,
an execution) of P is a sequence σ = s0 ·(m0, t0) ·s1 . . . sn−1 ·(mn−1, tn−1) ·sn such
that: (i) t0 ≤ t1 ≤ . . . ≤ tn (i.e., the occurrence of times increase monotonically),
(ii) s0 is the initial state and sn is a final state of P, and (iii) ∀j ∈ [1, n], we have:
R(sj−1, sj ,mj−1, cj−1) and Vj−1 |= cj−1.

As an example, the sequence σ′ = Start·(login(+), 0)·Logged·(preApproval(+), 1)·
PreApprovalApplication·(approved(−), 3)·CreditApproved·(ε, 33)·CreditExpired
is a correct execution of the financing service protocol depicted at figure 1. If
σ = s0 · (m0, t0) · s1 . . . sn−1 · (mn−1, tn−1) · sn is a correct execution of proto-
col P, then the sequence tr(σ) = (m0, t0) . . . (mn−1, tn−1) forms a timed trace
which is compliant with P. Continuing with the example, the execution σ′ of
the financing service protocol leads to the timed trace tr(σ′) = (login(+), 0) ·
(preApproval(+), 1) · (approved(−), 3) · (ε, 33). During an execution σ of a pro-
tocol P, the externally timed observable behavior of P, hereafter called timed
conversation of P and noted conv(σ), is obtained by removing from the cor-
responding timed trace tr(σ) all the non observable events (i.e., all the pairs
(mi, ti) with mi = ε). For example, during the previous execution σ′, the ob-
servable behavior of the financing service is described by the timed conversation
conv(σ′) = (login(+), 0) · (preApproval(+), 1) · (approved(−), 3). In the follow-
ing, given a protocol P, we denote by Tr(P) the (possibly infinite) set of timed
conversations of (or compliant with) P.

Protocol interaction semantics. Timed conversations describe the externally ob-
servable behavior of timed protocols and, as it will be shown below, are essential
to analyze the ability of two services to interact correctly. Let us consider the
protocol P depicted on Figure 1 and its reversed protocol P ′ obtained from P
by reversing the polarity of the messages (i.e., input messages becomes outputs
and vice versa). We can observe that when P ′ interacts with P following a
given timed conversation τ , P follows exactly a similar conversation but with
reversed polarities on the messages. If during such an interaction the timed con-
versation of P ′ is (login(+), 0)·(selectV ehicle(+), 1) ·(estimatePayment(+), 10)·
(fullCredit(+), 30) · (accept(−), 100), then the timed conversation of P ′ will be
(login(−), 0)· (selectV ehicle(−), 1)· (estimatePayment(−) , 10) · (fullCredit(−), 30)·
(accept(+), 100). In this case, we call the path (login, 0) · (selectV ehicle, 1) ·
(estimatePayment, 10) · (fullCredit, 30) · (accept, 100) a timed interaction trace
of P and P ′. Please note that the polarity of the messages that appear in interac-
tion traces is not defined, as in such traces each input message m of one protocol
coincides with an output message m of the other protocol. More precisely, let
P and P ′ be two timed protocols and let τ = (a0, t0), . . . (an, tn) be a sequence
of events for which the messages polarities are not defined. Then τ is a timed
interaction trace of P and P ′ if and only if there exist two timed conversation
σ1 and σ2 such that: (i) σ1 ∈ Tr(P) and σ2 ∈ Tr(P ′), and (ii) σ1 is the reverse
conversation of σ2 (i.e., the conversation obtained from σ2 by inverting polarity



of messages), and (iii) τ = Unp(σ1) = Unp(σ2), where Unp(σ) denotes the trace
obtained from σ by removing the messages polarities.

3 Timed Protocol Analysis

We target two types of protocol analysis, namely compatibility and replaceability
analysis. Compatibility analysis consists in checking whether two services can in-
teract correctly based on their protocol definitions (i.e., whether a conversation
can take place between the considered services), while replaceability analysis is
concerned with the verification of whether two protocols can support the same set
of conversations (e.g., a service can replace another in general or when interacting
with specific clients). These two kinds of analysis are useful for lifecycle manage-
ment of web services as, for example, to provide support for static and dynamic
binding as well as in protocol evolution. For both compatibility and replaceabil-
ity, we have defined several classes to identify different levels of compatibility and
replaceability, as well as operators that can be applied to protocol definition to
asses the level of compatibility and replaceability.

3.1 Compatibility Analysis

Compatibility analysis aims at characterizing whether two protocols (which typ-
ically depict a service provider and service requester) can interact. It also defines
to which extent the compatibility is possible, as some conversations that a proto-
col supports may not be supported by the other protocol. More specifically, the
following compatibility classes can be identified.

– Partial compatibility (or simply, compatibility): A timed protocol P1 is par-
tially compatible with another timed protocol P2 if there are some executions
of P1 that can interoperate with P2. In other words, partial compatibility im-
plies that there is at least one timed conversation σ of P1 which is "understood"
by P2 (i.e., the reversed conversation of σ is compliant with P2).

– Full compatibility: a protocol P1 is fully compatible with another protocol P2
if all the executions of P1 can interoperate with P2, i.e., any conversation that
can be generated by P1 is understood by P2.

We illustrate compatibility analysis and its challenges on the examples below.
Let us consider the protocols P and P ′ depicted at figure 2. Abstracting from
the timing constraints, we can observe that P is fully compatible with P ′ (i.e.,
a · b · c and a · b · d are valid interaction traces of the untimed versions of P
and P ′). However, due to the C-Invoke constraints specified on the transitions T3
of each protocol, P and P ′ cannot interact correctly. Indeed, P supports timed
conversations of the form (a(−), 0) · (b(+), t) · (c(+), t′), with t′ < t + 5 while
P ′ supports timed conversations of the form (a(+), 0) · (b(−), t) · (c(−), t′), with
t′ > t + 10. Hence, these two protocols cannot interact correctly since P ′ will
always send message c too late. Therefore, to be able to interact correctly, two
protocols must agree on the ordering of the messages to be exchanged as well as
on the corresponding timing constraints.
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Fig. 2. Three protocols to illustrate protocols analysis.

Let us now consider the protocols P and P ′′ of Figure 2. We can observe that
when interacting according to the timed interaction trace (a, 0) · (b, t), P moves
to a non-final state s2 while P ′′ moves to a final state s′′2 ending its conversation.
However, due the presence of the implicit transitions T4 and T5, P is able to
terminate correctly its execution by moving automatically to the final state s4
(i.e., it waits at state s2 for 8 hours and then moves automatically to state s3
where it waits for 4 hours before finally moving automatically to the final state
s4). Therefore, the two protocols P and P ′′ can interact correctly following the
interaction trace (a, 0) · (b, t).

The next example shows that implicit transitions can influence the identifica-
tion of final states and this naturally impacts compatibility analysis. We consider
again protocols P and P ′ of figure 2. After exchanging messages a and b, the
two protocols move to states s2 and s′2 respectively. If we consider the operations
that are defined explicitly at these two states, we can observe that s′2 provides
an operation d(−) while state s2 does not enable any invocation of a d opera-
tion. Consequently, focusing compatibility checking only on these two states is
not enough. Indeed, the presence of the implicit transition T4 in P changes the
service state automatically to the state s3 after 8 hours from which d(+) can be
fired. Consequently, P and P ′ can interact correctly following timed interactions
traces of the form (a, 0) · (b, t) · (c, t′), with t+ 8 < t′ ≤ t+ 10 (i.e., if a message d
is sent between 8 and 10 hours after a message b).

3.2 Replaceability Analysis

Replaceability analysis aims at characterizing whether, and to which extent, a
given service can be replaced by another one. In such a situation, the substitute
service can be transparently used by clients of the original service without the
need to change them beyond binding details such as the service URL. Like in the
case of compatibility analysis, replaceability analysis aims at supporting flexible
schemes as one cannot realistically expect to find services that are completely
replaceable. We have identified the following replaceability classes.



– Protocol equivalence w.r.t. replaceability: two business protocols P1 and P2 are
equivalently replaceable if they can be interchangeably used in any context
and the change is transparent to clients.

– Protocol subsumption w.r.t. replaceability: a protocol P2 is subsumed by an-
other protocol P1 w.r.t. replaceability if P1 supports at least all the conver-
sations that P2 supports. In this case, protocol P1 can be transparently used
instead of P2 but the opposite is not necessarily true.

– Protocol replaceability w.r.t. a client protocol: A protocol P1 can replace an-
other protocol P2 with respect to a client protocol PC if P1 behaves as P2
when interacting with a specific client protocol PC . This class is important
in those cases where we expect the service to predominantly interact with
certain types of clients.

– Protocol replaceability w.r.t. an interaction role: Let PR be a business proto-
col. A protocol P1 can replace another protocol P2 with respect to a role PR
if P1 behaves as P2 when P2 behaves as PR. This replace-ability class allows
to identify executions of a protocol P2 that can be replaced by protocol P1
even when P1 and P2 are not comparable with respect to any of the previ-
ous replace-ability classes. This class is important when we want to assess
replaceability when considering only certain functionality of the service, e.g.,
the purchasing part of a supply chain management service.
For all of the above classes, we can distinguish between full and partial replace-

ability. Full replaceability is as defined above. Partial replaceability is when there
is replaceability but only for some conversations and not others. For example, we
have partial replaceability with respect to a client protocol when protocol P1 can
replace another protocol P2 in at least some of the conversations that can occur
with Pc.

As an example, consider a protocol P1 obtained from P ′′ of Figure 2 by re-
versing the messages polarities. Such a protocol can be replaced by P of Fig-
ure 2. Indeed, the only timed conversations supported by P1 are of the form
(a(−), 0) · (b(−), t), with t > 0. Such conversations are also supported by P. The
opposite is however not true. Indeed, P may support some conversations that
contain the messages c or d while P1 does not. However, we can observe that
P1 can replace P when interacting with P ′′: the only timed conversations of P
that are understood by P ′′ are of the form (a(−), 0) · (b(−), t), with t > 0. Such
conversations are also supported by P1.

4 Protocol Operators

The discussion above concerning the compatibility and replaceability classes em-
phasized the need for operators to analyze and compare timed protocols. There
is also a need for understanding (when two timed protocols are neither equivalent
nor compatible) which conversations can take place and which ones cannot. This
motivates the development of a protocol algebra that enables the manipulation
and analysis of timed protocols.

We split the set of protocol operators in two categories: manipulation and com-
parison operators. The former category allows to compute protocols that captures



Operator name Symbol Semantics
Compatible Com-
position

‖TC P = P1 ‖TC P2 is a protocol P such that T ∈ Tr(P) iff T
is an interaction trace of P1 and P2

Intersection ‖TI P = P1 ‖TI P2 is a protocol P such that Tr(P) =
Tr(P1) ∩ Tr(P2)

Difference ‖TD P = P1 ‖TD P2 is a protocol P that satisfies the following
condition: Tr(P) = Tr(P1) \ Tr(P2)

Projection
[
‖TC
]

Let P = P1 ‖TC P2.
[
P1 ‖TC P2

]
Pi
, with i ∈ {1, 2},

is the protocol obtained from P1 ‖TC P2 by defin-
ing the polarity function of the messages as follows:
Polarity(

[
P1 ‖TC P2

]
Pi
,m) = Polarity(Pi,m), ∀m ∈ M

Table 1. Protocol manipulation operators semantics.

a property regarding a pair of protocols, for example to compute a protocol that
captures all of the common timed conversations of two protocols. The later cate-
gory allows to compare two protocols, for example to assess if they are equivalent
or not. We define these operators below.

Manipulation operators are applied to protocols and result in protocols. We
describe their formal semantics in Table 1. The introduction of time does not
change the definition compared to the case (untimed) business protocols of [4].

s0 s1 s2
T 1: a− T 2 :b −
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s0 s1 s2
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Fig. 3. Three timed protocols P1,P2 and P3 and some resulting protocols when using
protocol manipulation operators.

To illustrate these operators, Figure 3 shows three simple timed protocols P1,
P2 and P3 as well as the results when applying operators on them. For example,
the protocol P1 ‖TI P3 captures the timed conversations that are commonly sup-



ported by both P1 and P3: P1 does not support receiving a message c, hence it
does not appear in P1 ‖TI P3. Similarly P1 can only receive a b message within
the 10 seconds that follow the reception of a a message. Another example is the
protocol P3 ‖TD P1 that captures all the conversations that P3 supports, but that
P1 doesn’t. This is why the C-Invoke constraint of T2 in P3 ‖TD P1 is the negation
of the one of T2 in P1 as P3 does not carry a C-Invoke constraint on its transition
T2. Similarly, P3 supports receiving c messages while P1 does not.

We define two comparison operators, namely subsumption and equivalence.
They enable to compare timed protocols w.r.t. their timed conversations. The
subsumption, noted v, assesses whether one protocol supports all of the timed
conversations of another protocol (i.e., P v P ′ iff Tr(P) ⊆ Tr(P ′)). The equiv-
alence, noted ≡, checks whether two protocols support exactly the same set of
conversations (i.e., P ≡ P ′ iff Tr(P) = Tr(P ′).

Class Characterization
Partial compatibility of P1 and P2 P1 ‖TC P2 is not empty
Full compatibility of P1 and P2

[
P1 ‖TC P2

]
P1
≡ P1

Replaceability of P1 by P2 P2 v P1

Equivalence of P1 and P2 w.r.t. replace-
ability

P1 ≡ P2

Replaceability of P2 by P1 w.r.t. a client
protocol PC

[
PC ‖TC P2

]
P2
v P1 or equivalently PC ‖TC

(P2 ‖TD P1) is empty
Replaceability of P2 by P1 w.r.t. a role PR (PR ‖TI P2) v P1

Table 2. Characterization of the compatibility and replaceability classes.

The characterization of the protocol compatibility and replaceability analysis
classes using the protocol manipulation and comparison operators is given in
Table 2. The introduction of time does not change the characterization that had
been defined for (untimed) business protocols in [4].

5 Protocol Operators Properties

This section investigates the decidability and complexity properties underlying
our protocol operators. We show that there is a semantic-preserving mapping
from protocols into a new class of timed automata [7] with ε-transitions (i.e.,
ε-transitions). We illustrate such a mapping on an example and then we discuss
how existing results in timed automata theory can be reused/extended to deal
with our specific problems. More technical details can be found in [8].

5.1 Mapping Protocols into Timed Automata

Briefly, a timed automaton [7] is a finite automaton augmented with a finite set of
real-valued clocks. Clock constraints can be associated with transitions and can



also be reset to zero simultaneously with any transition. Figure 4 shows a timed
protocol and its corresponding timed automaton. The obtained automaton uses
two clock variables, x1 and x2, to implement the timing constraints described in
the corresponding timed protocol. For example, the constraint C-Invoke(T1 < 5h)
of transition T1 is captured in the timed automaton by the constraint x1 < 5
associated with the arc b(+) between states s1 and s2. Indeed, this constraint
is defined over variable x1 which is reset to zero when the automaton switches
from state s0 to s1 on symbol a(−). Then, while the automaton is at state s1,
the value of variable x1 shows the time elapsed since the occurrence of the last
transition s0 · a(−) · s1. The transition from state s1 to s2 on symbol b(+) is
enabled only if the value of variable x1 is less than 5. Thus, the timing constraint
expressed by this automaton is that the symbol b(+) must occur less than 5
units of time after the occurrence of the symbol a(−) (and this is exactly what
the constraint C-Invoke(T1 < 5h) on transition T1 prescribes). Also, note that
the implicit transition T4 in the timed protocol is described using an ε-transition
between states s2 and s4 in the corresponding timed automaton. The associated
M-Invoke(T2 = 10h) constraint is modeled in the timed automaton using two
clock constraints x = 10, associated with the ε transition, and x < 10 associated
with the remaining transition that is enabled from state s2 on symbol c(+). In
the remainder, we assume that timed protocols have been normalized by making
explicit all the temporal constraints as described above.

Timed automata are in general more expressive than timed protocols and
hence not any timed automaton can be mapped into a protocol. However, the
restricted class of timed automata that are obtained by a mapping from a timed
protocol can be translated back into timed protocols without loss of semantics. We
call this class PTA for Protocol Timed Automata. The procedure that we propose
translates a protocol into a timed automaton, as briefly explained below. To do
that, and to make sure that the mapping is effectively bĳective, we give three
conditions that identify timed automata that can be mapped back into timed
protocols.

Let P = (S, s0,F , M,X , C,R) be a timed protocol. An associated timed au-
tomaton AP = (L,L0, Lf , XP , E) over alphabet ΣP = M is built as follows: L = S,
L0 = {s0}, Lf = F ,XP = X and ∀r = (s, s′,m, c) ∈ R, a new switch (s, a, ϕ, λ, s′)
is added to E such that: a = m, ϕ = α if c = C-Invoke(α) or c = M-Invoke(α), and
λ = {xr}. Figure 4 depicts a timed protocol and its associated timed automaton.

Let A = (L,L0, Lf , X,E) be a timed automaton verifying the following con-
ditions:

(C1) ∀e = (l, a, ϕ, λ, l′) ∈ E, |λ| = 1 (i.e., exactly one clock is reset), and the
clock in λ is only reset on e: for every two distinct switches (l1, a1, ϕ1, λ1, l

′
1)

and (l2, a2, ϕ2, λ2, l
′
2) of E, we have λ1 ∩ λ2 = ∅ ,

(C2) A is deterministic, i.e., for every two switches (l, a, ϕ1, λ1, l
′
1) and (l, a, ϕ2, λ2, l

′
2)

from E recognizing the same event a from the same location l, then ϕ1∧ϕ2 ≡
false,

(C3) The allowed guards of the ε-transitions are conjunctions of atomic equal-
ity and inequality constraints such that each guard has at least 1 equality
constraint,
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Fig. 4. A timed protocol and its associated timed automaton.

(C4) Given the set {(l, ε, ϕ1, λ1, l
′
1), · · · , (l, ε, ϕn, λ1, l

′
n)} of ε-transitions starting

from a location l, the guard ϕj of each switch (l,m, ϕj , λj , l′j) (with m ∈
Σ ∪ {ε}) satisfies

∧
i 6=j

(xi < ki) such that (xi = ki) appears in ϕk with k ∈

{1, · · · , n}.

Condition (C1) enforces that every switch resets only one clock. Indeed, a
timed automaton switch is allowed to reset an arbitrary number of clocks, while
in the case of the mappings of timed protocols we need to reset only one clock: the
one that is associated with the transition. This defines a bĳection between the set
of clocks and the set of switches. Condition (C2) ensures determinism the guards of
2 switches that recognize the same event from the same location must be disjoint.
Condition (C3) enforces the definition of guards on the ε-labeled switches. Finally,
condition (C4) enforces the semantics of the M-Invoke constraints (determinism
and preemption).

Every timed automaton that verifies the conditions (C1), (C2), (C3) and (C4)
above can be mapped into a timed protocol, and hence is a timed protocol au-
tomaton. This mapping can be performed by reversing the procedure described
above. The following theorem says that a timed protocol and its associated timed
automaton are semantically equivalent.

Theorem 1. Let P be a timed protocol and AP its associated protocol timed au-
tomata. Then: Tr(P) = L(AP), where L(AP) denotes the timed language recog-
nized by the automaton AP .

The proof derives from the definition of both the PTA class and the mapping
from timed protocols to PTA.

5.2 Closure Property of Protocol Manipulation Operators

Through the aforementioned mapping, we derive results regarding intersection
and compatible composition operators. Indeed, it is well known that timed au-
tomata are closed under intersection [6]. Such a property is established by ex-
tending the classical automata product construction to timed automata. In [8]
we extend the product construction to show that the closure property also holds
for the PTA class (e.g., intersection of two timed protocol automata is a timed



protocol automaton). This leads to an algorithm to compute timed intersection
or composition of protocols.

The situation regarding the difference and subsumption operators is however
more complex. The main problem lies in the undecidability of the complemen-
tation in timed automata with ε-transitions. Since the difference and the lan-
guage inclusion problem (or subsumption) depend on the complementation (e.g.,
A\B ≡ A u B and L(A) ⊆ L(B) iff L(A) ∩ L(B) = ∅), the decidability of these
operators requires a proper investigation of the characteristics of protocol timed
automata. The main difficulty lies in the presence of the ε-transitions, which unlike
in the case of classical (untimed) automata, strictly increase the expressiveness
level of timed automata. [9] investigates the expressive power of ε-transitions and
identifies cases where ε-transitions can be removed without a loss of expressive-
ness (e.g., case of ε-transitions that do not reset clocks). Unfortunately, this result
is of no use in our case as the ε-transitions that we deal with do not belong to
the identified cases. Indeed, in the PTA class, ε-transitions strictly increase the
expressiveness of protocol timed automata as they reset clocks, and hence they
cannot be removed [10]. However, we have shown that the class PTA is closed
under complementation, which allows claiming that timed protocols are closed
under difference. Moreover, since PTA are closed under intersection, and given
that the emptiness checking problem is decidable for timed automata [6], the pro-
tocol subsumption and equivalence problems are decidable. The proof of closure
under complementation is based on the observation that although PTA automata
contain ε-transitions with clocks resets, they still exhibit a deterministic behav-
ior which ensures that at each step of an execution, all clock values are solely
determined by the input word. Therefore, closure under complementation can
be proved by extending the usual construction to PTA. The main result of this
section is given below.
Theorem 2. Timed protocols are closed under intersection, compatible composi-
tion and difference.

Performing a subsumption or equivalence test between two protocols is thus
decidable, as described by the theorem hereafter. We also give a complexity result
which is derived from existing work on the timed language inclusion problem for
timed automata [7].
Theorem 3. The subsumption and equivalence operators on timed protocols are
decidable, and their decision problems are PSPACE-Complete.

With the two theorems above, we have proved that our full set of operators can
be implemented by reusing the already-known constructs on timed automata [7].
Those results directly come from the novel class of timed automata that we have
identified. This makes it possible to conduct automated analysis for all of the
compatibility and replaceability classes on timed protocols.

6 Implementation and Discussion
We have developed a prototype as part of the larger ServiceMosaic project [5].
Briefly, ServiceMosaic (see http://servicemosaic.isima.fr/) is a CASE-toolset model-



driven prototype platform for modeling, analyzing, and managing web service
models including business protocols, orchestration, and adapters. The ServiceMo-
saic projects are developed for the JavaTM platform version 5. We created libraries
that provide the functionalities of our contributions, then we integrate them into
the Eclipse platform as plug-ins. Regarding the work presented in this paper, we
have designed a model for timed protocols and implemented the operators (the
subsumption and equivalence operators rely on the UPPAAL model checker). We
have also created a graphical editor for protocols as well as component that can
extract the protocols of the services that are used in a BPEL orchestration. In our
experimentations, we have also worked on protocols (manually) extracted from
RosettaNet PIPs.

The approach that we have described in this paper can be used in several prac-
tical contexts. We briefly outline one of them where we have used our prototype
to facilitate service composition development [8]. Given a BPEL orchestration,
we have used it to check if the selected services where fully or partially compat-
ible with the BPEL process behavior. By identifying which conversations can or
cannot be carried out, we have been able to support the development of protocol
adapters in a similar fashion as in [11] which tackles adaptation in the case of
untimed business protocols.

We now provide a brief outlook of related work. Several ongoing efforts in the
area of Web services recognize the importance of high level modeling and analysis
of services protocols (e.g., [3,4,12,13]). Similar approaches for protocols compati-
bility and replaceability exist in the area of component-based systems [14,15]. In
terms of protocol description, the existing models do not explicitly take timing
constraints into account. In terms of protocols analysis, mechanisms have been
proposed to verify protocols compatibility and replaceability. However, the ver-
ifications are still “black or white” whereas our approach targets a fine-grained
analysis for the cases where partial results are desirable. Standardization efforts
recognize the need for supporting the explicit description of web services func-
tional and non-functional properties [16]. Of most interest in the case of mak-
ing explicit business protocols are the Business Process Execution Language for
Web Services (BPEL), the Web Services Conversation Language (WSCL) and
the Web Service Choreography Interface (WSCI). Documents complying to those
specifications can be derived from protocols and vice-versa as our approach is
complementary to them.

In our work, we used a states machine-based model for describing protocols.
However, the formal foundations could have been also based on another model
such as Petri nets. In this case, the protocol operators would have to be ported to
this formalism to be able to perform compatibility and replaceability analysis. In
fact, timed protocols can be viewed as a syntactic variant of timed automata. In
this paper we have also significantly extended our initial work on service proto-
cols [17] by proposing: (i) a model for service business protocols that supports rich
timing constraints, (ii) a set of fine-grained protocol compatibility and replace-
ability classes, and (iii) a set of operators with formal foundations that can be
combined for performing those types of analysis. The results we have achieved is a
framework and a tool that can support development and binding of services with



timing properties. We believe that this is a significant contribution as the number
of available services increases and as the need of automated support for service
lifecycle management becomes a necessity. Interestingly, this work has also lead
to the discovery of an innovative class of timed automata. In future work, we aim
at extending the approach for analyzing web services compositions in presence of
timing abstractions.

A Theoretical study

A.1 Characterization of Protocol Timed Automata

Lemma 1. The mapping from a timed protocol P to a timed automaton A yields
a protocol timed automaton. Also, the inverse mapping of a A into P yields a
timed protocol.

Proof. The mapping of the states, transitions and messages of P to locations,
switches and alphabet in A is straightforward. We show that the conditions
(C1), (C2), (C3) and (C4) of protocol timed automata are satisfied by construction.

– (C1): ∀r = (s, s′,m, c) ∈ P, the mapping generates a switch (s,m, ϕc, λ, s′)
such that λ = {xr} is the reset on the unique clock which is associated to the
switch. Hence, two switches in A cannot reset the same clock. Also, the vari-
ables X in P are mapped to clocks X in A and the constraints are preserved
(e.g., C-Invoke(T1 < 3) in P becomes xT1 < 3 in A).

– (C2), (C3): they are satisfied by definition of timed protocols and M-Invoke
constraints.

– (C4): this condition can be satisfied after making all C-Invoke constraints
explicit: ∀(s, s′1, ε, c1), (s, s′2,m, c2) ∈ P,

c2 |= C-Invoke (¬c1 and ((Tr < kr) and · · · ))

where (xr = kr) appears in c1. This is then mapped in A as the following
constraint which satisfies (C4):

¬ϕc1 ∧ ((xTr < kr) ∧ · · · )

We can also show that the conditions (C1), (C2), (C3) and (C4) ensure that
the inverse mapping from A to P preserves the definition of timed protocols.

– (C1) ensures that each clock of A is associated to a unique transition variable
in P. This also preserves the constraints expressions.

– (C2) ensures determinism in P.
– (C3) ensures that the M-Invoke constraints can be correctly mapped from

the guards of the ε-transitions of A.
– (C4) ensures that the M-Invoke constraints preempt the explicit transitions

when their condition become satisfied. It also enforces them to be fired, as the
C-Invoke constraints become disabled once there is no more implicit transition
whose M-Invoke constraint can be satisfied.



Lemma 2. Let P be a timed protocol, and let A be its associated protocol timed
automaton: Tr(P) = L(A).

Proof. We start by showing that Tr(P) ⊆ L(A). To do that, we first consider
a timed trace σ = (a0, t0) · · · (an, tn) ∈ P. We propose the following induction
regarding the execution of σ over A: we show that each symbol ai (0 ≤ i ≤ n) can
be recognized by A until an which leads to σ to be accepted by A as it reaches a
final location. The property used in the induction is that the mapping of P into
A is correct, which we discuss after the induction.

(a0) is recognized by A at time t0, else the mapping is incorrect. Let 0 < k < n
such that the prefix (a0, t0) · · · (ak, tk) of σ has been recognized by A. Then ak+1
is also recognized by A at time tk+1, else the mapping is incorrect. Finally, an is
recognized at time tn by A, else again, the mapping would be incorrect.

The mapping of P into A is incorrect if any of the following cases is true.

1. Either of the conditions (C1), (C2), (C3) and (C4) is violated. This is impos-
sible by Lemma 1.

2. Some states or transitions in P have not been mapped to locations and
switches in A. This is impossible by construction.

3. Similarly as the case above, initial and final states in P have not been mapped
as initial and final locations in A, which is also impossible by construction.

4. Given s a,c−−→ s′ ∈ P and the corresponding switch s a,ϕc−−−→ s′ ∈ A, there exists
a timed word σ′ such that when c is satisfied, ϕc is not. This case cannot
happen as the constraints mapping does not change them.

As a consequence, the induction is correct: σ ∈ L(A), hence Tr(P) ⊆ L(A).
It can be shown in a similar fashion that given w ∈ L(A), w ∈ Tr(P), hence

L(A) ⊆ Tr(P) and consequently Tr(P) = L(A).

Theorem 4. ε-transitions strictly increase the expressiveness of protocol timed
automata.

Proof. We need to show that ε-transitions in protocol timed automata cannot al-
ways be removed, i.e., there are protocol timed automata for which there doesn’t
exist equivalent automata without ε-transitions. To do that, we exhibit the pro-
tocol timed automaton A depicted on Figure 5 and use the notions of precise time
and precise actions that were introduced in the Theorem 24 of [9] as a tool to
identify timed languages that can only be recognized by timed automata featuring
ε-transitions. The proof is actually the same as the one of Corollary 29 in [9].

It is easy to check that A is a protocol timed automaton verifying the condi-
tions (C1), (C2), (C3) and (C4) above. A presents 2 ε-transitions lying on directed
cycles, hence we don’t know if they can be removed using the techniques presented
in Section 8 in [9].

Let us now suppose that L(A) can be recognized by a timed automaton A′

without any ε-transition. Note that A′ is necessarily free of diagonal constraints
(e.g., constraints of the form x−y # c) by definition of protocol timed automata.
Also, A′ can be rendered disjunction-free without any loss of generality (see [9] for
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Fig. 5. A protocol timed automaton A that cannot be expressed equivalently without
ε-transitions.

techniques and discussion). In order to leverage the Theorem 24 of [9], we define
Cmax = 1 (no constant in the guards of A are larger than 1). Let also δ > 0. A
can recognize words of the form

(b, δ1) · (b, δ2) · · · (b, δd−1) · (a, d) · (a, d+ 1) · · ·

where d ∈ N, d ≥ Cmax and δi ∈ (i − 1, i) \ δN for all 0 < i < d. Let P a path
of A′ that accepts such a timed word. Given that the a-labeled events occur at
integer times, their occurrences should be precise in P . Also, d ≥ Cmax, hence
from Theorem 24 of [9], there exist some occurrence of b that should be precise in
P which is not possible as δi 6∈ δN for any 0 < i < d. Consequently, L(A) cannot
be recognized by a timed automaton without ε-transitions.

Lemma 3. Protocol timed automata are deterministic: given a protocol timed
automaton A and a timed word w ∈ L(A), w has exactly one run over A.

Proof. There can be more than one run of w over A if given a location l ∈ A
and an input symbol a at time t, at least two switches can recognize a (i.e., their
guards can be both satisfied by the clock valuations at time t). If l does not exhibit
any ε-transition, then this is not possible by condition (C2). The same condition
also ensures that if l exhibits more than one ε-transition, then their guards are
also disjoint.

Let us now consider the case where l exhibits a ε-transition, an a-labeled
transition and the state that is reached through the ε-transition also exhibits an



a-labeled transition:

a ,1

a ,3
 2=x=c∧ ' 2

By definition, ϕ1 |= (x < c) and ϕ3 |= (x ≥ c), hence ϕ1 ∧ϕ3 |= false for any
clock valuation. Moreover, given a ε-transition e from a location l, every non-ε-
transition is disabled when the guard of e becomes satisfied (condition (C4)).

Consequently, w has exactly one run over A.

A.2 Characterization of Protocol Operators

Theorem 5. The class of protocol timed automata is closed under intersection
and parallel composition.

Proof. Intersection and parallel composition are computed from the product of
the states by synchronizing on the switches labels. For instance two switches
(l1, a, ϕ1, λ1, l

′
1) and (l2, a, ϕ2, λ2, l

′
2) each in a distinct timed automaton can be

synchronized to form a switch ((l1, l2), a, ϕ1 ∧ ϕ2, λ1 ∪ λ2, (l′1, l′2)) in the intersec-
tion. Parallel composition only varies on the synchronization function: in the case
of intersection we can synchronize a(+) and a(+) while in parallel composition
a(+) and a(−) would be synchronized. ε-labeled switches have to be handled dif-
ferently as they must not be synchronized: when a location offers such a switch, it
must be reproduced in the intersection or parallel composition automaton. This
could potentially introduce indeterminism on protocol timed automata, hence we
provide a modified construction that exploits the specificities of the model to han-
dle ε-labeled switches. We introduce two variations: the first one is on the guards
and clocks while the second one handles ε-labeled switches.

When performing the synchronization of two switches on timed automata,
their clock reset sets are merged: λ1 ∪ λ2. In protocol timed automata, a unique
clock is reset on every switch. We take advantage of this by creating a new clock
on every switch of the intersection or parallel composition, and rewrite the con-
straints. For example, a constraint ϕ = (xe1 < 3) is rewritten as ϕ′ = (x(e1,e′1) < 3)
if e′1 can be synchronized with e1.

Consider two protocol timed automata A and A′. Given two locations l ∈ A
and l′ ∈ A′ such that a synchronization on a non-ε event is possible, we consider
each pair (l, ε, ϕi, λi, li) ∈ A and (l′, ε, ϕ′j , λ′j , l′j) ∈ A′ of their ε-labeled switches.
Note that in the case where only either l or l′ offers ε-labeled switches, they can
be simply reported in the intersection or parallel composition. Depending on clock
resets, three cases are possible:

1. ϕi becomes satisfied before ϕj , or
2. ϕj becomes satisfied before ϕi, or



3. both ϕi and ϕj become satisfied at the same time.

Thus, we add to the intersection or parallel composition of A and A′ the following
switches:

e1 = ((l, l′), ε, ϕi ∧ ¬ϕj , λe1 , (li, l′))
e2 =

(
(l, l′), ε,¬ϕi ∧ ϕj , λe2 , (l, l′j)

)
e3 =

(
(l, l′), ε, ϕi ∧ ϕj , λe3 , (li, l′j)

)
where λe1 , λe2 and λe3 each reset a new single clock xe1 , xe2 or xe3 . Note that if one
automaton (e.g., A) had a constraint on such a ε-labeled switch (e.g., xek < 3 with
λi = {xek} from (l, ε, ϕi, λi, li) above), then the constraint in the intersection or
parallel composition is rewritten as a disjunction (e.g., xe1 < 3∨xe3 < 3). Finally,
we enforce condition (C4) on the non-ε-labeled switches from (l, l′).

We can check that this construction satisfies the definition of a protocol timed
automaton, hence the closure property under intersection and parallel composi-
tion.

– (C1): this comes from the modifications on the clocks assignment and guard
constraints rewriting.

– (C2): by definition of the synchronization on non-ε-labeled switches, and by
the way ε-labeled switches are added to the intersection of parallel composi-
tion.

– (C3) and (C4): by construction.

Corollary 1. Timed protocols are closed under intersection (‖TI) and parallel
composition (‖TC).

Theorem 6. The class of protocol timed automata is closed under complementa-
tion.

Proof. We compute the complement of a protocol timed automaton using the fol-
lowing procedure which is derived from the one for deterministic timed automata
as given in [7], with the difference lying in the presence of ε-transitions. Then, we
show that this construction satisfies the definition of a timed automaton.

Given a protocol timed automaton A, we denote by A∗ its complete automaton
which is build as follows.

1. A location q is added to A∗ whose role is to act as a rejection location: given
any timed word w defined over L(A), the execution of w over A∗ goes to
the location q as soon as an input symbol yields to a word which is not in
L(A). Hence, any timed word w defined over the alphabet of A has a (unique)
execution over A∗.

2. For each location l of A (this includes q) where 6 ∃l′ such that l ε−→ l′, and for
each symbol a, a transition l

a,g−−→ q is added. The guard g is defined as the
negation of the disjunctions of the guards of the other a-labeled transitions
from l.

3. For each location l of A where ∃l′ such that l ε,ϕ−−→ l′, we add transitions
l
a,g−−→ q as in the case where there is no ε-transition, but g must also satisfy
¬ϕ ∧ ((xi < ki) ∧ (xi+1 < ki+1) ∧ · · · ) where each xi < ki comes from every
xi = ki constraint that appears in ϕ.



As in [7], the complement A of A is deduced from A∗ by inverting the final and
the normal locations due to the fact that every timed word w ∈ L(A) has a unique
run over A.

We can check that this construction satisfies the definition of a protocol timed
automaton, hence the closure property under complementation.

– (C1): A already satisfies this, and the switches to q that are added in A∗ can
also be assigned a clock each.

– (C2): the switches that originate from A already satisfy this, and the ones
that have been added in A∗ satisfy this requirement by construction.

– (C3) and (C4): from A and by construction.

Corollary 2. Timed protocols are closed under difference (‖TD).

Proof. Protocol timed automata are closed under complementation and intersec-
tion, hence timed protocols are closed under difference.

Corollary 3. The subsumption (v) and equivalence (≡) decision problems for
protocol timed automata are PSPACE-Complete.

Proof. The subsumption and equivalence reduce to checking wether the language
that is recognized by a protocol timed automaton is empty. This can be done
using a timed automata emptiness checking technique such as the construction of
the regions automata or the zones automata which are known to be PSPACE-
Complete [6, 7, 18].

B Protocol Analysis at Work

We know show how the prototype (see Figure 6) can be used to facilitate service
development. We assume that a developer is defining a BPEL process, related to
the handling of a purchase order, and that the process invokes several services
during its execution. The tool will assist the developer in checking if the selected
services have a protocol which is fully or partially compatible with the defined
BPEL process, will identify which conversations can and cannot be carried out,
and will also tackle the case of non compatibility by supporting the development
of protocol adapters.

B.1 BPEL Process Outline

Consider the BPEL process depicted on Figure 7. It orchestrates four web services
to process a purchase order. For the sake of clarity, we have removed the assign
BPEL instructions from the process diagram, normally required to prepare and
reuse the messages exchanged with the involved web services. The first part of
the process handles the payment options. If the customer asks for a loan, then the
process will make an offer using the accounting web service. The customer can
then accept or reject it. The asynchronous pick BPEL construction also defines
an alarm that will be fired after 72 hours to discard the process instance if the



Fig. 6. Screenshot of the ServiceMosaic protocol development and analysis prototype.

customer does not reply in time to the loan offer. The second part checks for the
ordered goods availability with the warehouse web service. If some goods are not
available, they will be ordered. In order to match quality of service requirements,
the purchase is canceled if the warehouse does not manage to purchase the missing
goods within 48 hours. The third an last part of the process handles the payment
and prepares the goods delivery. Finally, the customer is notified that the purchase
has successfully completed.

B.2 Business Protocols Extraction

Based on this BPEL process definition, we extract the timed protocols that the
process supports when interacting with its partner services. To do this, we use
the multi-party protocol BPEL extractor that we developed, and we then obtain
the protocol governing the interaction of the process with each of the partner
services by filtering the multi-party protocol based on each service partner link.
The resulting protocols are shown in Figure 8. Figure 9 shows instead the protocol
of the warehouse service we are planning to use as one of the services invoked by
our process.



B.3 Protocol Analysis

We next apply the protocol analysis operators to assess compatibility between
the protocols supported by our process and the protocols of the services we plan
to use. For this, we assume that either the protocol or BPEL definition (from
which we extract the protocol) of these services is available. Figure 10) shows the
results of this analysis for the warehouse service. In particular, the compatible
composition operator P5 ‖TI P3 gives the set of the conversations that can occur
between protocols P3 and P5. Ideally, we would want this set to be equal to the
conversations supported by P3, which means that P5 is fully compatible with P3.

However, in our example, we do not have such luck. In fact we see that the
conversations supported by the compatible composition are a subset of those
supported by P3. The Figure further shows the conversations that are supported
by the process but not by our partner service P5 (which is empty in case of full
compatibility), as well as the conversations that the partner supports but that the
process does not support. The first of these two combined protocol is obtained
by computing the inverse P ′3 of P3 and then the difference P−1

3 ‖TD P5. The latter
is instead computed as P5 ‖TD P−1

3 . As we will examine later, all these combined
protocols will become helpful in examining if and which changes need to be made
to the process.

In particular, while the first combined protocol of Figure 10 (compatible com-
position) tells us what we can do, the second one denotes what our process is
prevented from doing when using this partner (hence we call these prevented in-
teractions), while the third one denotes conversations that the partner would
support, but we are not leveraging due to how we implemented the process. We
call these neglected interactions.

It is interesting to note that no compatibility problem would have been spotted
in the case of business protocols without timing constraints [4]. Indeed, the un-
timed version of P5 would have supported all of the conversations of the untimed
version of P3.

B.4 Managing Partial Replaceability Scenarios

By looking at the three combined protocols, the developer can assess if the selected
service is a good fit or not, and how to handle situations of partial replaceability
or of no replaceability. In general, this depends on the specific business purpose
of the process. For example, the service I am planning to invoke may not support
a cancelPO operation, but I may be willing to take the risk and use it anyways
even if cancellations are not allowed, for example because it offers cheaper rates.
Or, conversely, the selected service supports several forms of payments (accessed
via different protocols) but my process can only support one of them, and we may
be fine with it as for example our company only issues payments via credit card
and not via bank transfers.

Alternatively, we can modify the process definition to adapt it to the service
we are using, either to i) ensure that our process does not generate conversations
our partner cannot understand, or to ii) leverage conversations supported by our



selected services (e.g., extend our process to support bank transfers). As another
example, in our process, we can remove the onAlarm 48h handler of the second
pick complex activity, so that the process will wait for the purchaseResponse
message to arrive, thereby removing the problematic temporal constraints in the
extracted expected warehouse protocol. However, the process may find itself being
put on hold indefinitely if a problem occurs on the warehouse service and it does
not send a purchaseResponse message back.

Another solution is to generate a protocol adapter [11] to reconcile the dif-
ferences. It can be done with the ServiceMosaic tools using an aspect-oriented
framework [19] where adapters are plugged through advices written in BPEL. The
adapter is be developed as follows. The pointcut is triggered when a purchaseRequest
message is received. The advice is a BPEL process where an alarm starts counting
from the reception of the purchaseRequest message. If the service does not send
a purchaseResponse withing the next 48 hours, then the adapter drops it when
the warehouse service sends it afterwards. The BPEL engine will have already
woken up the process instance by then, and taken action by replying to the client
partner link with a cancelPO message.

Finally, it should be noted that for most BPEL engines, a message is simply
dropped when it cannot be dispatched to any process instance for which it is
waiting. An exception is then usually raised and logged inside the BPEL engine. In
this example the adapter would be useful for diminishing the number of internally-
thrown exceptions (raising exceptions has a significant performance cost). The
choice of developing this adapter should be balanced in light of its development
cost compared to the (limited) benefits, as BPEL engines can provide a form of
“implicit” adapter in very specific mismatches cases such as this one.
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receive purchaseOrder

invoke prepareLoanOffer

invoke loanOffer

onMessage accept onMessage reject onAlarm 72h

stop stop

invoke checkAvailability

invoke purchase

onMessage purchaseResponse onAlarm 48h

reply cancelPO

invoke takeGoods

invoke shipGoods

invoke processPayment

reply poProcessed

pick

pick

flow

start

finish

stop

Loan No loan

No Yes

Payment method

Goods availability

Accounting

Customer

Warehouse

Delivery

Fig. 7. A BPEL process that handles purchase order.



T1 : shipmentRequest− 

T 2 : shipmentResponse 

P1 (delivery)

T 1: paymentRequest −

T 2 :
paymentResponse 

T 3: loanRequest −

T 4 : loanOffer 
T 5:
paymentRequest −

P2 (accounting)

T 1 :
purchaseOrder 

T 2 : poProcessed −

T 3: poCancel −

T 4:
loanOffer −

T 5: reject 

T 6: accept 

T 7 : expiration
M−Invoke T 4=72h

T 8: poProcessed −

P4 (customer)

T 1: availabilityRequest −

T 2 : availabilityResponse

T 3: purchaseRequest−

T 4 : purchaseResponse 
C−Invoke T 348h

T 5: takeGoods −

P3 (warehouse)

M−Invoke T3=48h 
T 6 : toolong

C−Invoke T 472h 

C−Invoke T 472h 

T 7: takeGoods−

Fig. 8. Timed protocols extracted from the BPEL process of Figure 7.



T 1: availabilityRequest −

T 2 :
availabilityResponse 

T 3: purchaseRequest −

T 4 : purchaseResponse 

T 5: takeGoods−

T 6 :
ensureAvailabilityRequest −

T 7:
ensureAvailabilityResponse  T 8: purchaseRequest−

T 9: takeGoods−

P5 (warehouse)

T 11: takeGoods −

T 10: takeGoods−

Fig. 9. The complete warehouse service protocol.



T 2 :availabilityResponse 

T 3 :
purchaseRequest −

T 4 : purchaseResponse 

C−InvokeT 3≥48h 

P5 ||TD P3-1 (+ pruning)

T 1: availabilityRequest −

T 5: takeGoods −

T 1 : availabilityRequest − T 2 :availabilityResponse 

T 3:
purchaseRequest −

T 6: takeGoods−

[P5 ||TC P3]
P3

T 4 : purchaseResponse 

C−Invoke T 348h 

T 5: takeGoods−

Fig. 10. Analysis of the common and differing conversations supported by P3 and P5.


