
ServiceMosaic: Interactive Analysis and Manipulation of Service Conversations
H. Motahari-Nezhad, R. Saint-Paul, B. Benatallah

University of New South Wales, Australia
{hamidm, regiss, boualem}@cse.unsw.edu.au

F. Casati
University of Trento, Italy

casati@dit.unitn.it

J. Ponge & F. Toumani
Blaise Pascal University, France
{ponge,ftoumani}@isima.fr

1. Introduction
In service-oriented computing, a conversation is a se-

quence of message exchanges between two or more ser-
vices to achieve a certain goal, for example to order and
pay for goods. A business protocol of a service is a spec-
ification of the possible conversations that a service can
have with its partners [1]. Motivated by the goal of facil-
itating the scalable development and maintenance of ser-
vice oriented applications, especially in light of the many
benefits of protocols, we have developed ServiceMosaic
(servicemosaic.isima.fr), a platform for Web services life-
cycle management [2]. ServiceMosaic is an interactive and
model-driven CASE tool for managing Web service inter-
actions, which consists of two broad modules: protocol dis-
covery and protocol management.

The discovery module [4] allows deriving protocol mod-
els from real-world service conversation logs and refining
them. This is important as protocol specifications may not
be always available. Furthermore, even when the model is
available, discovery allows for checking if the implementa-
tion faithfully follows the designed model, and especially,
over time, the risk of inconsistencies between specification
and implementation increases and so does the importance
of deriving the actual protocol model.

The protocol management module [2, 1] is based on an
algebra and operators for analysis of protocols. Once users
have obtained protocol models, either via discovery or via
user-defined specifications, they can use the operators to an-
alyze protocol specifications in different ways, for example
to understand which conversations can or cannot occur be-
tween two parties, to analyze the protocol differences be-
tween two versions of a service, or to understand if a service
protocol can support all the conversations as mandated by a
standard specification.

This layered and interactive analysis and manipulation
of conversations and protocols makes systematic discovery
of service protocols and their manipulation a closed loop
where users can gradually explore and understand service
interactions as well as manipulate service protocols.

2. ServiceMosaic: Design and Implementation
ServiceMosaic framework features a simple, high level

but expressive enough model to represent protocol abstrac-
tions that are useful and needed in practice [2]. This model

Cleaning and
Transformation Protocol

Refinement

Protocol
Discovery

Message Log

Service Description
Repository

Conversation Log Discovered
Protocol

Refined
Protocol

Protocol Definition /
Modeling

Protocol Discovery Module

Protocol Analysis and
Manipulation Module

Protocol Analysis and
Manipulation

Intersection

Difference Compatibility
Analysis

Replaceability
Analysis

Figure 1. The architecture of ServiceMosaic

builds upon the traditional state-machine formalism [3] to
represent message choreography constraints and extends
it to cater for relevant protocol abstractions such as tem-
poral constraints or transactional implications. Figure 1
shows the architecture of ServiceMosaic prototype. The
core functionalities of ServiceMosaic are implemented as
JavaTM (JDK 1.5) libraries, which are leveraged in GUI
tools. All components of ServiceMosaic are implemented
as Eclipse (www.eclipse.org) plug-ins. These components
include the following libraries and GUI tools: library and
editor for business protocols enabling protocol definition,
library and editor for protocols analysis and manipulation
operators (i.e., difference, intersection, matching, compat-
ibility and replace-ability analysis), and a library and edi-
tor for protocol discovery and refinement. We have used
HP SOA Manager (managementsoftware.hp.com/products/
soa/), which is a commercial Web services monitoring tool,
to generate message logs used for discovery.

3. Demo Scenarios
Protocol Discovery. We take as a demo scenario one

of the examples provided by the Web service Interoperabil-
ity (WS-I) Organization (www.ws-i.org), related to a retailer
supply chain service (called Retailer in the following).
In the demo we present a Retailer service that interacts
concurrently with several clients. The retailer company has
three objectives: first, it is interested in understanding the
actual protocol followed by the implemented Retailer ser-

1-4244-0803-2/07/$20.00 ©2007 IEEE 1497

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on November 16, 2009 at 07:51 from IEEE Xplore. Restrictions apply.

(a) Protocol Discovery and Refinement Editor (b) Protocol Analysis and Manipulation Editor

Figure 2. Screenshots of ServiceMosaic

vice; second, it wants to understand if and how this differs
from the one specified by WS-I; third, it wants to analyze
if the service can interact with the Web services of prospec-
tive partners. To achieve the first goal, we deploy HP SOA
Manager to monitor and intercept the message exchanges
of Retailer with its clients in a simulated environment of
real-world. Next, the protocol discovery algorithm is ap-
plied [4]. As real-world logs are often imperfect (noisy and
incomplete), we show the two distinct stages of the algo-
rithm: (i) the log analysis stage to estimate noise, and (ii)
the derivation of the protocol model from an incomplete log.

Protocol Refinement. We show that the user can vi-
sually examine and refine the discovered protocol. We il-
lustrate how meta-data associated to protocol model can be
used to understand potential errors made during the dis-
covery process and correct them (top of Figure 2(a)). We
demonstrate how the user may explore the edit distance hi-
erarchy and examine proposed edit operations to DP (mid-
dle of Figure 2(a)). The user is recommended to browse
nodes of hierarchy based on their cardinality, which gives
an indication of the number of conversations that would be
accepted by DP if the correction is made. We also show
that, as an alternative, if users already know the proto-
col model and are confident that the implemented service
matches what they think the protocol model is, then they
can directly define the protocol model via the protocol defi-
nition editor provided in ServiceMosaic.

Protocol Analysis and Manipulation. After discovery
and refinement, a protocol modeling the Retailer service
is obtained. To understand similarities and differences of
the discovered protocol with the one published by WS-I,
the user next performs replaceability analysis between the
two. This analysis is done by applying two operators: in-

tersection and difference. The intersection will tell the user
the parts of the two protocols that are similar (support the
same conversations), while the difference will stress the
conversations supported by one protocol but not by the other
(see left-top view of Figure 2(b)). In performing intersec-
tion analysis, the user will see a combined protocol model,
which is again a FSM but where states corresponds to a pair
of states, one from each protocol model being analyzed.
The combined model defines the conversations accepted by
both protocols and also shows in which state each of the
two protocols transition to, when a given message is sent or
received. Finally, we assume that the Retailer wants to
interact with a prospective partner, who has made its pro-
tocol definition available. To understand which conversa-
tions can or cannot occur between the retailer service and
the prospective partner, the user applies the compatibility
checking operator (bottom of Figure 2(b)). The user will see
the result of the operation, again shown as a combined pro-
tocol model, showing the possible conversations and how
the client and service change state each time a message is
sent by one and received by the other.

References

[1] B. Benatallah, F. Casati, and F. Toumani. Representing, analysing and
managing web service protocols. Data and Knowledge Engineering
(DKE), 2005.

[2] B. Benatallah, F. Casati, F. Toumani, J. Ponge, and H.R.Motahari-
Nezhad. ServiceMosaic: a platform for model-driven analysis and
management of web services. IEEE Internet Computing, 10(4), 2006.

[3] D. Harel and M. Politi. Modeling Reactive Systems with Statecharts:
The Statemate Approach. McGraw-Hill, Inc., New York, NY, USA,
1998.

[4] H. Motahari, R. Saint-Paul, B. Benatallah, and F. Casati. Protocol
discovery from imperfect service interaction logs. In International
Conference on Data Engineering (ICDE’07), April 2007.

1-4244-0803-2/07/$20.00 ©2007 IEEE 1498

Authorized licensed use limited to: UR Rh?ne Alpes. Downloaded on November 16, 2009 at 07:51 from IEEE Xplore. Restrictions apply.

