
N◦ d’ordre : D.U. 1840
EDSPIC : 402

Université Blaise Pascal – Clermont-Ferrand II
École Doctorale des Sciences pour l’Ingénieur de Clermont-Ferrand

The University of New South Wales, Sydney, Australia
School of Computer Science and Engineering

Thèse
présentée par

Julien PONGE
pour obtenir le grade de

Docteur d’Université
Spécialité : Informatique

Model Based Analysis of Time-aware Web
Services Interactions

Thèse dirigée par Farouk TOUMANI / Boualem BENATALLAH
Soutenue publiquement le 1er Juillet 2008 devant le jury suivant :

Prof. Marie-Christine FAUVET Présidente
Prof. Schahram DUSTDAR Rapporteur

Prof. Claude GODART Rapporteur
Prof. Marlon DUMAS Examinateur

Prof. Michel SCHNEIDER Examinateur
Prof. Farouk TOUMANI Directeur de Thèse (UBP)

Prof. Boualem BENATALLAH Directeur de Thèse (UNSW)

Abstract. Web services are increasingly gaining acceptance as a frame-
work for facilitating application-to-application interactions within and across
enterprises. It is commonly accepted that a service description should in-
clude not only the interface, but also the business protocol supported by
the service. The present work focuses on the formalization of the impor-
tant category of protocols that include time-related constraints (called timed
protocols), and the impact of time on compatibility and replaceability anal-
ysis.

We formalized the following timing constraints: C-Invoke constraints
define time windows of availability while M-Invoke constraints define ex-
pirations deadlines. We extended techniques for compatibility and replace-
ability analysis between timed protocols by using a semantic-preserving
mapping between timed protocols and timed automata, leading to the novel
class of protocol timed automata (PTA). Specifically, PTA exhibit silent
transitions that cannot be removed in general, yet they are closed under
complementation, making every type of compatibility or replaceability anal-
ysis decidable. Finally, we implemented our approach in the context of a
larger project called ServiceMosaic, a model-driven framework for web ser-
vice life-cycle management.

Keywords. Web services; timed business protocols; compatiblity and re-
placeability analysis; choreography; orchestration; business process; service-
oriented architectures; timed automata.

i

Résumé. Les services web gagnent de l’importance en tant que cadre fa-
cilitant l’intégration d’applications au sein et en dehors des frontières des
entreprises. Il est accepté que la description d’un service ne devrait pas
seulement inclure l’interface, mais aussi le protocole métier supporté par
le service. Dans le cadre de ce travail, nous avons formalisé la catégorie
des protocoles incluant des contraintes de temps (appelés protocoles tem-
porisés) et étudié l’impact du temps sur l’analyse de compatibilité et de
remplaçabilité.

Nous avons formalisé les contraintes suivantes : les contraintes C-Invoke
définissent des fenêtres de disponibilités tandis que les contraintes M-Invoke
définissent des délais d’expiration. Nous avons étendu les techniques pour
l’analyse de compatibilité et de remplaçabilité entre protocoles temporisés
à l’aide d’un mapping préservant la sémantique entre les protocoles tem-
porisés et les automates temporisés, ce qui a défini la classe des automates
temporisés de protocoles (PTA). Les PTA possèdent des transitions silen-
cieuses qui ne peuvent pas être supprimées en général, et pourtant ils sont
fermés par calcul du complément, ce qui rend décidable les différents types
d’analyse de compatibilité et de remplaçabilité. Enfin, nous avons mis en
oeuvre notre approche dans le cadre du projet ServiceMosaic, une plate-
forme pour la gestion du cycle de vie des services web.

Mots-clés. Services web; protocoles métiers; compatibilité; remplaçabil-
ité; analyse; chorégraphie; orchestration; processus métier; architectures
orientées-services; automates temporisés.

iii

This work was conducted at the LIMOS Laboratory (Laboratoire d’Informatique,
de Modélisation et d’Optimisation des Systèmes), Université Blaise Pascal,
Clermont-Ferrand, France:

LIMOS
Complexe scientifique des Cézeaux
63177 Aubière cedex
France

This work was also conducted under cotutelle agreements at the School of
Computer Science and Engineering, The University of New South Wales,
Sydney, Australia:

School of Computer Science and Engineering
UNSW Kensington Campus
The University of New South Wales
Sydney
NSW 2052
Australia

v

Acknowledgments

The story behind this PhD thesis started in 2004 while a Master by Research
student at the Université Blaise Pascal in Clermont-Ferrand. As I was look-
ing for an internship topic, Michel Schneider pointed me to Farouk Toumani,
who would eventually become my PhD adviser. Thank you Michel for that,
as Farouk proved to be a very good adviser. During those 4 years working
on this topic, he always provided good guidance and support. It has been
a great pleasure to work with him, both from a professional and a personal
point of view. In turn, Farouk pointed me to Boualem Benatallah, who
would become my PhD adviser at the University of New South Wales as
I did my PhD under cotutelle agreements between the two universities. I
enjoyed working with Boualem very much, and his advices turned out to
complement nicely those from Farouk.

I would like to thank the people with whom I shared the office room:
Yoan Renaud that I first met when I entered the university, Alain Gély
and Olivier Coupelon. We have had some great time together, and I am
sure that there is still a lot more to come. There is a special mention for a
group of 4 students of mine who later became my friends: Pierre Colomb,
Olivier Montagner, Olivier Passalacqua and Frédéric Desforges. Of course I
have enjoyed working with many other colleagues and friends in Clermont-
Ferrand: Ramy Ragab, Marie Agier, Olivier Raynaud, Frédéric Flouvat,
Hélène Jaudoin, Stéphanie Chollet, Kevin Hivernat, Yannick Loiseau, Raoul
Médina, Béatrice Bourdieu and Françoise Toledo.

I would like to thank my coauthor Fabio Casati for the good times we
have had working together, and for his never ending positive attitude. I
met a lot of great people during my visits at UNSW. Warm thanks go
to my friend Hamid Motahari and his wife Razieh for their kindness and
for making my discovery of life in Australia so much easier. Among the
people I met there, I would like to thank Halvard Skogsrud and Woralak
Kongdenfha. Special thanks go to Mohand-Said Hacid that I first met while
in Sydney. We spent some great time at UNSW, and he taught me a lot
regarding running training!

vii

Many thanks go to my reviewers and examiners as part of the French side
of my PhD defense: Marie-Christine Fauvet, Schahram Dustdar, Claude
Godart, Marlon Dumas and Michel Schneider. It has been a great honor to
have you all as part of the examination committee!

My warmest thanks naturally go to my family, my parents Evelyne and
Jean for having always stood behind me through the good and the bad
times. I would probably not have gone so far in my studies without their
encouragements and the education that they gave me. My final – and
biggest – thanks go to Marie-Anne for her love and steady support during
all of these years. Doing this PhD has required some sacrifices and I am
deeply grateful to her not only because she accepted them, but because she
fully and wholeheartedly endorsed them.

viii

Contents

Contents ix

List of Figures xiii

List of Tables xvi

I Introduction and background 3

1 Introduction 5
1.1 Context . 5
1.2 Research issues . 7
1.3 Contributions . 9
1.4 Outline . 11

2 Web services 13
2.1 Enterprise integration . 13

2.1.1 Application architectures 14
2.1.2 Middlewares . 18

2.2 Service-oriented computing 24
2.2.1 Service-oriented architectures 24
2.2.2 Technologies . 27
2.2.3 Service description and discovery 29

2.3 Business protocols . 31
2.3.1 Model . 32
2.3.2 Protocol analysis . 33

ix

Contents

2.3.3 Discussion and related work 35

3 Timed automata 39
3.1 Overview . 39

3.1.1 Model and semantics 40
3.1.2 Classic problems . 43

3.2 Classes of timed automata 46
3.3 Software tools . 51

II Protocol modeling and analysis 55

4 Timed protocol modeling 57
4.1 Timing abstractions . 58

4.1.1 Motivating examples 58
4.1.2 Timing abstraction primitives 60

4.2 Extending business protocols with temporal abstractions . . 62
4.2.1 Timed business protocols 63
4.2.2 Formalization . 66

4.3 From timed protocols to protocol timed automata 71
4.3.1 Informal overview of the challenges 71
4.3.2 Protocol timed automata 77
4.3.3 Enforcing M-Invoke constraints in protocol timed au-

tomata . 79
4.3.4 Theoretical results 83

4.4 Discussion . 86
4.4.1 Relationship to event-clock automata 86
4.4.2 Constraints with absolute dates 88
4.4.3 Message transport communications 89

5 Protocol analysis 91
5.1 Classes of protocol-based analysis 91

5.1.1 Protocol-level compatibility 92
5.1.2 Protocol-level replaceability 94

x

5.2 Protocol operators . 95
5.3 Characterizing the compatibility and replaceability classes . 98
5.4 Discussion . 101

5.4.1 Related work . 101
5.4.2 Message matching . 103

6 Properties of protocol operators 105
6.1 Results in protocol timed automata 106

6.1.1 Intersection of protocol timed automata 106
6.1.2 Complementation of protocol timed automata 109

6.2 Results for timed protocol operators 112

III Applications and perspectives 115

7 The ServiceMosaic Protocols project 117
7.1 ServiceMosaic . 117

7.1.1 Project overview . 117
7.1.2 Technical overview 119

7.2 Prototype: the ServiceMosaic Protocols project 122
7.2.1 Components . 123
7.2.2 Protocol extraction 127

8 Protocol analysis at work 131
8.1 BPEL process outline . 131
8.2 Business protocols extraction 133
8.3 Protocol analysis . 133
8.4 Managing partial replaceability scenarios 136

9 Conclusion and perspectives 139
9.1 Summary . 139
9.2 Perspectives beyond protocol analysis 140
9.3 Publications . 143

Bibliography 147

xi

Contents

IV Appendix 165

A Proofs 167
A.1 Proof of Theorem 1 . 167
A.2 Proof of Lemma 1 . 168
A.3 Proof of Lemma 2 . 168
A.4 Proof of Theorem 2 . 169
A.5 Proof of Lemma 3 . 170
A.6 Proof of Theorem 3 . 171
A.7 Proof of Theorem 4 . 172

B Semantics of protocol timed automata 175

C An overview of UPPAAL 177
C.1 UPPAAL model and query language 177
C.2 UPPAAL tools . 179

D UPPAAL and protocol timed automata 183
D.1 Conversion issues . 183
D.2 Conversion technique . 184
D.3 Sample conversion and emptiness checking 185

xii

List of Figures

2.1 Overview of typical 1-tier, 2-tiers and 3-tiers architectures. . . . 15
2.2 Different approaches for data integration. 19
2.3 RPC-style middleware. 20
2.4 Messaging middleware. 21
2.5 Enterprise application integration using a message broker / bus. 22
2.6 A SOA composition scenario. 26
2.7 A RESTful forum application. 28
2.8 A simple software updates notification and distribution scenario

based on syndication. 29
2.9 A business protocol of a search engine. 32
2.10 Two business protocol for illustrating analysis. 35

3.1 A sample timed automaton A. 40
3.2 The LTS SA associated to the timed automaton A of Figure 3.1. 43
3.3 A model checking example that reduces to state reachability

analysis. 45
3.4 Principle of model checking. 52
3.5 A screenshot of UPPAAL. 53

4.1 A BPEL process that uses an alarm. 59
4.2 Sequence diagram of the RosettaNet PIP 3A4 (Request Purchase

Order). 61
4.3 A timed protocol of an online financing service. 63
4.4 Examples for illustrating why both C-Invoke and M-Invoke are

necessary. 66

xiii

List of Figures

4.5 A sample timed protocol P used as a mapping running example. 72
4.6 A sample timed automaton that does not enforce M-Invoke se-

mantics. 73
4.7 A sample protocol timed automaton that does enforce M-Invoke

semantics. 77
4.8 A protocol timed automaton A that cannot be expressed equiv-

alently without ε-transitions. 84
4.9 A sample event-recording automaton viewed as a protocol timed

automaton. 87

5.1 Three protocols for illustrating protocol analysis. 93
5.2 Three timed protocols P1,P2 and P3 and some resulting proto-

cols when using protocol manipulation operators. 97
5.3 Compatibility and replaceability analysis. 100

6.1 Two protocol timed automata P1 and P2 as well as their inter-
section P1 ‖TI P2. 108

6.2 The complement of the protocol timed automaton of Figure 4.8
(with drawing shortcuts). 111

7.1 Architecture overview of the ServiceMosaic platform. 118
7.2 Trac wiki view. 121
7.3 Trac roadmap view. 122
7.4 Trac source browser view. 123
7.5 Trac issues management view. 124
7.6 Screenshot of the ServiceMosaic Protocols prototype. 125
7.7 Architecture of the ServiceMosaic Protocols prototype. 126
7.8 Extraction of multi-party protocols fragments from BPEL. . . . 128

8.1 Simplified view of a BPEL process that handles purchase orders. 132
8.2 Timed protocols extracted from the BPEL process of Figure 8.1. 134
8.3 The complete warehouse service protocol. 135
8.4 Analysis of the common and differing conversations supported

by P3 and P5. 136

xiv

C.1 The path formulae that UPPAAL supports. 178
C.2 UPPAAL: modeling environment. 180
C.3 UPPAAL: simulation environment. 181
C.4 UPPAAL: verification environment. 182

D.1 Emptiness checking of protocol timed automata with UPPAAL. 186

xv

List of Tables

3.1 Classic problems for (general) timed automata (Alur and Dill [6]). 44
3.2 Emptiness and timed language inclusion checking results for

some classes and extensions of timed automata. 47
3.3 Expressiveness of some classes and extensions of timed automata. 48
3.4 Results on the problem of model-checking using timed temporal

logics. 51
3.5 Model checking tools for classes and extensions of timed automata. 53

5.1 Protocol manipulation operators semantics. 97
5.2 Characterization of the compatibility and replaceability classes. 99

C.1 Semantics of the path formulae supported by UPPAAL (a subset
of TCTL). 179

xvi

“If you find that you’re
spending almost all your time
on theory, start turning some
attention to practical things; it
will improve your theories. If
you find that you’re spending
almost all your time on
practice, start turning some
attention to theoretical things;
it will improve your practice.”

Donald Knuth

1

Part I

Introduction and background

3

One

Introduction

The introduction of this thesis first presents the context in the field of
web services and application integration. We then look at the research
issues behind this work, the contributions and finally give an outline of the
document.

1.1 Context

Web services are increasingly gaining acceptance as a framework for fa-
cilitating application-to-application interactions within and across enter-
prises (Alonso et al. [4]). Application interoperability has been and still
is a difficult issue due to difficulties created by heterogeneous and au-
tonomous systems. Web services provide abstractions and technologies
for exposing enterprise applications as services and make them program-
matically accessible through standardized interfaces. Indeed, the main
benefit they bring to application integration is that of standardization,
in terms of description languages, coordination, and interaction protocols
(Alonso et al. [4]; Papazoglou and Georgakopoulos [107]; Papazoglou et al.
[108]; Papazoglou and van den Heuvel [109]). Standardization at interface
definition language (WSDL) and transport protocol (SOAP) has enabled
basic interoperability at the messaging layer. Indeed, developers are using
SOAP and WSDL to integrate enterprise applications (S. Vinoski [124]).

5

1. Introduction

This is by itself a huge improvement over previous application integration
middlewares (e.g., RPC and messaging systems) as no costly adapters have
to be developed so that the systems can interoperate (e.g., network protocol
entry points and data representation converters).

While much progress has been made toward providing basic interoper-
ability, there is still a lot to be done to simplify service development and
interaction. In particular, an important aspect of Web services that affects
interoperability is that services are loosely-coupled, that is, they are not
developed only to interact with specific clients but are meant to serve the
needs of many different (and potentially unknown) clients, possibly devel-
oped by different teams or even different companies. Hence, developers of
client applications need to be aware of all functional and non-functional
aspects of a service to be able to understand if they can interoperate with
a service and how to develop clients that can interact correctly with the
service. As such, service descriptions are specifications of the syntactic or
semantic properties of a service that are made available to potential clients,
for example with the purpose of:

1. assisting developers in creating clients that can correctly use and in-
teract with a service, and

2. enabling the selection, either at design time or at runtime, of services
that match the clients needs.

Hence, service descriptions need to be richer than “just” descriptions of
interfaces as in conventional middleware (e.g, Corba IDL). Specifically, it is
commonly accepted that a service description should include not only the
interface, but also the business protocol supported by the service, i.e., the
specification of possible message exchange sequences (conversations) that
are supported by the service (Benatallah et al. [18]). Tools supporting ser-
vice development today are mainly concerned with interoperability at the
lower levels of the service stack (e.g. mappings from WSDL to Java and
vice versa, or making two SOAP-based systems talk to each other). There

6

Research issues

is little support for protocol modeling and management.

Protocols can be specified using BPEL (Business Process Execution Lan-
guage (OASIS [102])) or any of the many other formalisms developed for
this purpose (e.g., (Benatallah et al. [18, 21]; Daniela Berardi [46])). Pro-
viding service descriptions is not in itself sufficient to facilitate development
and binding. In addition to descriptions, we need formal methods and soft-
ware tools for automatically analyzing service descriptions to: (i) identify
if interaction between a client and a service is possible, and if it is, (ii)
identify which conversations can be carried out between two services, to
help developers to check if these include all and only the desired ones, and
if it is not, (iii) understand mismatches between protocols and, if possible,
create adapters to allow interactions to occur.

The need for formal methods and software tools for such type of analysis
is widely recognized, and many approaches have been developed to this end.
In (Benatallah et al. [18, 21]; Boualem Benatallah et al. [29]), an approach,
a model for business protocols and a framework for protocol-based analysis
had been presented. The availability of such analysis concepts and tools
is quite powerful in that it allows us to assess compatibility in both top-
down and bottom-up development approaches. The ServiceMosaic project
(Benatallah et al. [22]) aims at developing a model-driven framework for
web service life-cycle management. Business protocol management is a
key concern in the ServiceMosaic tools set. In addition to protocol design
and analysis tools, it also includes facilities for adapting services at the
protocol level and for discovering protocol models from service execution
logs. As such, the work that we present here is being developed as part of
the ServiceMosaic effort.

1.2 Research issues

The present work focuses on the important category of protocols that
include time-related constraints (called timed protocols in the following).

7

1. Introduction

Time is a crucial abstraction that has been studied in several works in
research fields such as workflow systems (Bettini et al. [27]; Maria et al.
[87]; Tiplea and Macovei [130]) and even web services (Berardi et al. [25]; Dyaz
et al. [52]; Kazhamiakin et al. [78]). There are countless examples of be-
haviors that involve timing issues in any kind of protocol (Benatallah et al.
[18]), from business protocol for web services (e.g., see the RosettaNet PIPs),
to interactions between traditional web-based services and users (see E-
Commerce web sites such as Travelocity or Amazon), to lower level pro-
tocols such as TCP. Time-related behaviors range from session timeouts
to “logical” deadlines with different kinds of behaviors (e.g., seats reserved
on a flight needs to be paid within n hours otherwise they are released).
However, most approaches mainly consider time for performing traditional
model checking verifications such as liveness (a condition can be satisfied),
safety (a condition can never be satisfied) and testing the absence of dead-
locks (Berardi et al. [25]; Dyaz et al. [52]; Kazhamiakin et al. [78]).

The work that we present here formalizes the timing constraints of the
business protocol model and extends the analysis approach introduced in
(Benatallah et al. [18, 21]; Boualem Benatallah et al. [29]). The introduc-
tion of time aspects adds significant complexity to the problem compared to
the case of “simple” business protocols from (Benatallah et al. [21]). Many
formal models enabling explicit representation of time exist (e.g., timed
automata, timed petri-nets), all showing extreme difficulties to handle al-
gorithmic analysis of timed models. For example, timed automata, which
are today considered as a standard modeling formalism to deal with timing
constraints, suffer from undecidability of many problems such as language
inclusion and complementation that are fundamental to system analysis
and verification tasks (Alur and Dill [6]). Such problems have been shown
to be sensitive to several criteria (e.g., density of the time axis, type of
constraints, presence of silent transitions, etc) (Rajeev Alur and P. Mad-
husudan [118]).

In our case, supporting compatibility and replaceability analysis requires

8

Contributions

tackling a number of challenges and producing several contributions, which
we outline hereafter.

1.3 Contributions

Given the importance of considering time-related properties, we present a
set of concepts and techniques, supported by a tool, for performing com-
patibility and replaceability analysis between timed protocols. The contri-
butions are the following.

Timed protocols model. The first step consists in defining a protocol
model, called timed business protocol that enhances the business protocol
model presented in (Benatallah et al. [18, 21]; Boualem Benatallah et al.
[29]) by introducing time-related constraints. We identified two timing con-
straint primitives that we added to the model for which we give both a
syntax and semantics.

1. C-Invoke constraints define time windows during which an action can
take place (e.g., receiving a purchase order acknowledgment), and

2. M-Invoke constraints define triggers for implicit actions to take place
(e.g., a timeout).

Timed business protocols provide a precise understanding of the external
behavior of a service, as one knows exactly which conversations are valid
with respect to both the messages ordering and the timing at which those
messages are exchanged. Syntax and semantics are required for timed proto-
cols. As timed automata (Alur and Dill [6]) form a widely studied model for
capturing timing requirements of systems, a link between timed protocols
and timed automata allowed to re-use and derive properties. We will see
that the task was not straightforward, especially as M-Invoke constraints
are not easy to represent equivalently in timed automata.

Timed protocols analysis. The next step consists in defining analy-
sis concepts for identifying compatibility and replaceability between timed

9

1. Introduction

protocols. To do that, we extended the work of (Benatallah et al. [21])
by introducing several flexible classes for both compatibility and replace-
ability, and by characterizing them using a set of protocol manipulation
and comparison operators. By flexible, we mean that those classes cater
for more than “black or white” compatibility or replaceability cases like it
has traditionally been done for hardware and software components, as the
versatile, fast-changing nature of web services requires flexibility for such
an approach to be useful.

In our timed protocol operators investigations, we chose to reuse and
extend work from timed automata, and from there, we have obtained their
decidability. To do that, we defined a semantic-preserving mapping between
timed protocols and timed automata, leading to a novel class of timed
automata that we called protocol timed automata. The task is however not
trivial, as:

• protocol timed automata exhibit ε-labeled switches with clock resets
that make them strictly more expressive than timed automata (Beat-
rice Berard et al. [13]), keeping the traditional problems of language
inclusion and complementation undecidable (Alur and Dill [6]), and

• M-Invoke constraints semantics are hard to implement in timed au-
tomata as we will see in chapter 4.

The study of protocol timed automata allowed for two important theoretical
results:

1. the class of protocol timed automata is closed under both intersection
and complementation, making it the first such one among the existing
classes of timed automata having ε-labeled switches with resets, and

2. protocol operators remain decidable in the case of timed protocols as
we derive techniques from timed automata. Had the class of protocol
timed automata not been closed under complementation, those results
would not have hold true.

10

Outline

ServiceMosaic prototype. We implemented our approach in the con-
text of a larger project called ServiceMosaic (Nezhad et al. [99]). More
specifically, we developed:

• a business protocol model library

• a protocol manipulation and comparison operators library that also
offers checking for all of the classes of protocol compatibility and re-
placeability

• a set of plug-ins for the Eclipse platform (see http://www.eclipse.org/)
that includes a protocol editor and a visual interface for doing protocol
analysis work.

The components developed in this project serve as the basis of many other
ServiceMosaic projects and will be published under an open source license
in 2008.

The approach that we present is innovative in that it provides a fine-
grained analysis of web service interactions, and timed automata are used
in a different context of what they have been traditionally used for (i.e.,
model checking). Last but not least, few works have focused on timing
abstractions in web services, and when it is the case, it is mainly for reusing
model-checking techniques.

1.4 Outline

This thesis has been divided in the following three parts.

Introduction and background. The present chapter (chapter 1) pro-
vided an introduction. Chapter 2 is an overview of web services and their
origins in application integration. We also provided succinct materials on
the related concepts and technologies. Finally, chapter 3 provides back-
ground knowledge on the field of timed automata. It introduces the for-
malisms, classes and common problems that have been studied by the for-

11

http://www.eclipse.org/

1. Introduction

mal verification analysis community. This is especially interesting in the
context of this work, as we make a different usage of timed automata than
doing verification tasks.

Protocol modeling and analysis. Chapter 4 introduces the model of
timed protocols that supersedes the business protocols of (Benatallah et al.
[21]). It gives both the syntax and semantics. It also gives the semantic-
preserving mapping to protocol timed automata, and illustrates that im-
plementing M-Invoke constraints in timed automata is everything but a
straightforward task. Chapter 5 presents the protocol-based compatibility
and replaceability analysis concepts. They are a direct extension of what
had been done in (Benatallah et al. [21]) as protocol operators have been
upgraded to support timing constraints as well. Finally, chapter 6 studies
the properties of protocol operators in the context of protocol timed au-
tomata. This is where we obtain their decidability by reusing some results
from timed automata and contributing new ones (e.g., complementation
of the class of protocol timed automata despite the presence of ε-labeled
switches).

Applications and perspectives. Chapter 7 presents the ServiceMosaic
project and the tools that we developed as part of a subproject called Ser-
viceMosaic Protocols. Chapter 8 provides one scenario where compatibility
and replaceability analysis can be leveraged in the context of a BPEL-based
composition of web services. Finally, chapter 9 opens perspectives for fu-
ture work, and gives hints for applying the contributions of this work well
beyond “just” timed protocol analysis.

12

Two

Web services

This chapter introduces web services and the novelties brought by service-
oriented computing for facilitating enterprise integration beyond the tradi-
tional boundaries of organizations information systems. Indeed, web ser-
vices are not “just” an evolution of existing middleware, they also address
new integration needs.

The structure of this chapter is the following. We start by a brief in-
troduction to enterprise integration and application architectures. We then
present some families of conventional middlewares that have been used for
application integration, and we show their limitations in light of new in-
tegration challenges, including the need to facilitate integration between
business partners. We then present service-oriented computing and the
business protocol model and analysis techniques that serve as a foundation
of this thesis contributions.

2.1 Enterprise integration

The information system of an organization typically comprises various as-
sets that range from data sources (e.g., relational databases systems) to
applications that fulfill different needs (e.g., office tasks suites or business
intelligence solutions). Such parts of an information system are either de-
veloped “in-house” to meet specific requirements, or they are acquired from

13

2. Web services

third-party vendors (with possible customer-specific adaptations). Those
assets rarely live isolated to each other. Indeed, it is often necessary for
an application to access the data produced by another one, or even to ac-
cess some parts of an API1 to reuse some of its functionalities. Enterprise
integration is a strong information technology concern (Hohpe and Woolf
[73]). Careful practice is required to foster existing applications and stir
their full potential in the larger view of an enterprise information system
(Fowler [58]).

Web services, and more generally service-oriented architectures, provide
new perspectives for facilitating enterprise integration. They not only break
technical barriers (e.g., difficulties in bridging applications from different or-
ganizations), they also enhance the architecture of information systems in
a distributed, platform and language agnostic manner (e.g., bridging appli-
cations written in Cobol, Java and .Net). However, web services should not
be viewed as revolutionary. They should rather be seen as evolutionary,
i.e., they are an evolution of enterprise integration practices over the last
few decades (Alonso et al. [4]).

This section reviews the architectures found in enterprise applications,
and highlight where integration can happen as it next focuses on middle-
wares2.

2.1.1 Application architectures

From an architectural point-of-view, it is common to differentiate different
tiers in an application. This is especially true with the generalization of
distributed applications as the different tiers can be physically deployed sep-
arately (Alonso et al. [4]). We briefly present the typical tiered architectures
while an overview of them is available in Figure 2.1.

1Application Programming Interface.
2Briefly, the term middleware designates software that facilitates the interoperability

between heterogeneous systems.

14

Enterprise integration

Business logic

Data

Mainframe Terminals

Databases Business logic

Graphical interfaceRemote logic

Server Clients

Database servers

Business logic

Application servers
Rich clients

Web browsers

Clients

Ressource layer Business layer Presentation layer

1-tier 2-tiers

3-tiers

Figure 2.1: Overview of typical 1-tier, 2-tiers and 3-tiers architectures.

1-tier (70’s – 80’s). This type of architecture is highly reminiscent of
the early design of enterprise applications of the 70’s and has kept being
used throughout many developments of the 80’s. Those architectures were
relying on applications to be deployed on a single physical machine, called
a mainframe, while end-users would access it through terminals over a net-
work (often a proprietary network solution rather than a standards-based
one). This type of architecture turned out to be relatively simple to run
with simplified maintenance life-cycles as applications were deployed to a
single, central machine. It had however a lot of obvious problems, includ-
ing the need for expensive hardware upgrades to scale up in the number of
concurrent terminals or the single-point of failure syndrome.

15

2. Web services

2-tiers (90’s). This is also called client / server in reference to the decom-
position of the application units in server-side and client-side units. Those
architectures have been primarily pushed forward by the generalization of
relational database management systems exposed through network inter-
faces, thus providing an application neutral way for applications to store
and gather data. The database systems are deployed server-side while the
remainder of the application (business logic and visual interface) is client-
side. There are variants to this: some computation-intensive tasks can be
deported to the server as well. Also, some applications can embed client-
side databases. A typical example of this is the support of “offline modes”
where an application needs to store data when no network connection is
available and synchronize it with the server when it becomes available again.
Compared to 1-tier architectures, 2-tier applications brought a number of
improvements, among which the promotion of standard-based networks as
well as normalized data storage and representation systems. Performance-
wise, they were also able to introduce clustering of both databases and
portions of business logic to handle scalability in the number of clients.

3-tiers and n-tiers (end 90’s – 2000’s). A 3-tiers application comprises
the following layers (Hohpe and Woolf [73]).

• The resources layer provides an access to databases, files, network
interfaces and legacy applications.

• The business layer provides the core functionalities of applications, no
matter how they are accessed. This layer often relies on component
technologies (e.g., EJBs3, see http://java.sun.com/products/ejb/).

• The presentation layer exposes the applications to end-users and ap-
plications through a rich set of devices and technologies. In a similar
fashion as the model–view–controller paradigm, the very same appli-
cation can be exposed through different presentation interfaces.

3Enterprise Java Beans

16

http://java.sun.com/products/ejb/

Enterprise integration

This type of architecture started to become widespread with the advent
of database-driven web applications. It pushed the generalization of ap-
plication servers (e.g., JavaEE, .Net Framework or LAMP4 solutions) that
embed the business logic, with the database storage being often delegated
to another server. In turn, the presentation layer is accessed through web
browsers which are light and generic display devices. Those applications can
still be accessed from desktop applications, now called rich clients by con-
trast to web browsers being considered as thin clients. The term “n-tiers”
refers to a finer-grained decomposition of an application architecture than
3-tiers. For example in the business layer, a purchase order management
component may rely on a remote payment processing component.

Integration placeholders. Enterprise integration can be performed:

• horizontally, by integrating assets from the same tier (e.g., integrating
data from heterogeneous customer-centric databases), and

• vertically, by allowing the components from one tier to access to an
upper or lower tier (e.g., a payroll management component accessing
a relational database).

Integrating such assets would be easy in a perfect world where data rep-
resentation and application interfaces would be uniform. The reality is of
course very different as an information system present some of the following
sources of heterogeneity: platforms (including operating systems, hardware
architectures and execution platforms), databases systems and program-
ming languages.

As an organization evolves, it periodically changes its technological stan-
dards, resulting in the need to integrate new and legacy systems. For ex-
ample a warehouse management application may have been developed a
few years back using the Delphi programming platform while new systems
need to be developed in Java. Such legacy systems are often kept “as-is”
since rewriting them has significant costs (e.g., development and training

4Acronym for Linux, Apache, MySQL and PHP / Perl / Python (this is not strict
as other technologies can be used as replacements).

17

2. Web services

of employees) without necessarily resulting in practical benefits (e.g., the
“old” application already fulfills the needs).

Systems that facilitate both horizontal and vertical enterprise appli-
cations integration are called middlewares. The next section provides an
overview of them.

2.1.2 Middlewares

In this section, we review some common middleware families. We also
expose the limitations of conventional middlewares. The role of a middle-
ware goes beyond just bridging heterogeneous software artifacts: it hides
some of their inherent complexity (much like a Facade does in object-
oriented programming (Gamma et al. [63])). A middleware can provide
some development-time infrastructure (e.g., developer tools) and runtime
infrastructure (e.g., deployed execution and monitoring components). We
give a few examples of middlewares families (Alonso et al. [4]; Hohpe and
Woolf [73]). The platforms that are based on middleware technologies rarely
support only a single family. Full-stack application servers such as the ones
that provides the JavaEE specification implement much of the following
ones.

Data integration. Applications physically store their data in files, databases,
relational databases and so on. Several approaches exist, and we illustrated
them on Figure 2.2. The first one is to adapt the data from one or more
applications so that another one can process it (Figure 2.2(a)). An example
would be to extract some data from a spreadsheet document and a relational
database and transfer to another application. This involves creating ad-hoc
transformation components (e.g., scripts or XSLT transformers). The other
approach to data integration is to integrate data sources as heterogeneous,
distributed relational databases. In this case there are two ways of achieving
it.

18

Enterprise integration

Binary file

Database
Transformation

Spreadsheet
document

Spreadsheet
application

Application

Data warehouse

Data sources Data sources

Application

Mediation system

(a)

(b) (c)

ETL
Wrapper Wrapper Wrapper

Figure 2.2: Different approaches for data integration.

1. Materialized approaches use ETL5 tools that pull data from several
relational database sources, normalize/transform it, then finally push
it to data-warehouses (Figure 2.2(b)).

2. Virtual approaches (Figure 2.2(c)) use techniques and concepts such
as global-as-view and local-as-view where the data is exposed by the
mean of queries over the sources (see (Lenzerini [82]; Ullman [132]) for
an overview and (Chawathe et al. [44]; Goasdoué et al. [65]; Halevy
et al. [67]; Levy et al. [83]) for implementation-related discussions).

5Extract, Transform and Load

19

2. Web services

Components

Remoting API

Clients

Client remoting API

Network

Figure 2.3: RPC-style middleware.

Remote procedure calls (RPC). They allow applications to commu-
nicate through regular procedure / function / method calls of programming
languages. Such a call looks like a normal, local invocation of some ap-
plication code, but in reality, the actual code that is executed runs on a
remote system. To do that, RPC middlewares encode the call parameters
in a message that is sent over the network to the remote machine that will
run the actual code. Once it has been executed, a response message is sent
back to the invoking application with a return value being encoded inside
the message. An illustration is provided on Figure 2.3. The preparation of
the message (either for performing the call or returning the value) is called
marshaling. Similarly, the decoding of the message (either on the remote
server or the invoker side) is called unmarshaling. RCP middlewares have
been implemented for a lot of languages and platforms. Examples include
distributed components such as EJBs (remote session beans) or Microsoft
DCOM.

Message-oriented middlewares (MOM). They allow the communi-
cation between applications through asynchronous messages. By contrast
to RPC middlewares, the messages do not cary “function call” semantics as
they are rather general purpose documents exchanged between the systems.
A MOM is responsible for collecting and routing messages. It also ensures
their integrity, and that the messages are not being lost. Quality of service

20

Enterprise integration

Queue

(1)

(2)

Topic

(1)

(2)

(2)

(2)

message

software entity

Figure 2.4: Messaging middleware.

requirements are generally available, with priorities and validity expiration
dates being the two most common in use. A MOM is also able to transform
the message contents. This is useful when a message needs to be routed to
an application that does not understand the initial message data format.
Two message basic communication patterns are found in MOM (see Fig-
ure 2.4): message queues provide n-to-1 communication between n message
emitters and one receiver while message topics allow broadcasting messages
between n emitters and m receivers. An example specification of a MOM
is the Java Messaging System (JMS).

Object request brokers (ORB). They allow clients to delegate the
discovery and binding processes of components that match programmatic
interfaces. The broker will select the best component according to the
criteria it has been configured for, and will provide the clients with objects

21

2. Web services

without them knowing what their concrete implementations are. To do that,
an ORB relies on directories of components. Corba (http://www.corba.org/)
is an example of a middleware comprising ORB technology.

Transaction monitors (TP). They ensure the coordination of distributed
components as part of transactional processes. Relational database man-
agement systems have efficient support for transactions on data manipula-
tion, hence it is often natural to rely on them for transactional behavior in
applications. This is however not always possible when different business
logic components have to be assembled as each of them may not rely on
the same database. Those systems usually implement variants of the three-
phases commit protocol (Skeen and Stonebraker [126]). An example TP is
the Java Transactional API (JTA).

Delivery
planner

Warehouse
database

Orders passing
application

Accountants,
sales force

Integrated
application

PlannerAdapter DatabaseAdapter OrdersAdapter EmailAdapter

Message broker / bus

Figure 2.5: Enterprise application integration using a message broker / bus.

Example. We give an example of an enterprise application integration
on Figure 2.5 where the business process of the purchase orders manage-

22

http://www.corba.org/

Enterprise integration

ment is handled through a set of existing applications. Each application is
connected through an adapter to a message-oriented middleware, called a
messages bus. Each message is routed (and possibly transformed) to other
entities (e.g., a message sent by the orders passing application for asking
goods availability is delivered to the warehouse database adapter). Each
adapter is using diverse forms of middleware to bridge the bus and the ap-
plication. For example the warehouse database adapter can use an ODBC
connection to deal with the underlying database, while the delivery planner
adapter may use RPC to communicate with the plannification system.

Limitations of conventional middlewares The “conventional” mid-
dlewares that we saw above all share some common limitations. The first
one is probably that a lot of adaptation components have to be developed
to allow two middleware-based systems to “talk” to each other. Another
issue is that conventional middlewares are largely centralized (Alonso et al.
[4]), which limits deployment flexibility and again, requires the development
of adapters. As an example, given two RPC frameworks, there is often a
need for creating an adapter if they come from different vendors. Worse,
even a standard specification is not enough for granting interoperability of
systems. A good example is the Java Messaging System (JMS) that defines
a standard API for MOM middleware in Java. While every JMS-compliant
implementation ensures that an application can be ported from one JMS
vendor to another one, there is no requirement on the network protocols and
data representation formats, meaning that adapters have to be developed
to bridge JMS brokers originating from different vendors.

Things get worse when integration needs to be performed across the
boundaries of organizations, as network connectivity issues get added to
the (already costly) development of adapters. Indeed, crossing companies
firewalls is a serious concern as security need to be preserved, and main-
taining such exceptions is complex. Also, a company will rarely trust a
partner enough for allowing a direct connexion between their information
systems: connectors also need to provide a controlled, coarse-grained inter-
face to the internal information system. Another issue is that in such cases,

23

2. Web services

integration is performed in a point-to-point fashion, something that does
not scale well as the number of integrated partners grows (Alonso et al.
[4]). There is also an inherent lack of flexibility in those approaches as de-
veloping adapters and allowing basic connectivity takes time. By contrast,
organizations today want to reduce costs, integrate easily with partners and
be able to change and outsource some of their assets “painlessly”.

Web services, and more generally service-oriented architectures have
most benefits of the previous middleware families for facilitating application
integration. But better, they also solve the mentioned limitations as we will
see now.

2.2 Service-oriented computing

This section presents service-oriented computing. We start by an overview
of service-oriented architectures. We then review the existing web service
technologies before looking at service descriptions.

2.2.1 Service-oriented architectures

A commonly-accepted definition6 of web services is the following:

Web services are a new breed of Web applications. They are
self-contained, self-describing, modular applications that can be
published, located, and invoked across the Web. Web services
perform functions, which can be anything from simple requests
to complicated business processes... Once a Web service is de-
ployed, other applications (and other Web services) can discover
and invoke the deployed service.

Service-oriented architectures (SOA) form the new wave of information
systems (Papazoglou et al. [108]; Papazoglou and van den Heuvel [109]).

6http://webservices.xml.com/pub/a/ws/2001/04/04/webservices/index.html and http:
//www6.software.ibm.com/developerworks/education/wsbasics/wsbasics-ltr.pdf

24

http://webservices.xml.com/pub/a/ws/2001/04/04/webservices/index.html
http://www6.software.ibm.com/developerworks/education/wsbasics/wsbasics-ltr.pdf
http://www6.software.ibm.com/developerworks/education/wsbasics/wsbasics-ltr.pdf

Service-oriented computing

The key idea of SOA is to turn the data sources and applications in an en-
terprise system into distributed units referred to as services. Each service
is self-described and it is expected to fulfill a very focused set of coarse-
grained functionality requirements (e.g., a payroll processing service is not
expected to also handle warehouse provisioning). They can then be as-
sembled to realize applications and business processes. Services provide
standard-based, platform-neutral interfaces that hide the implementation
details. Also, the services should be autonomous with little dependencies
to each other. This means that SOA promotes the loose coupling of services
that are used for performing application integration of heterogeneous assets.
The loose-coupling comes from both the fact that services are autonomous
and that they use open standards for their external access (interfaces and
data exchange formats).

While approaches with similar goals had been developed before the ad-
vent of web services (e.g., Corba, distributed components, ...), they bring
some novelty (Alonso et al. [4]). SOA are indeed often associated with web
services as the core mean to realize them. Instead of re-inventing new inter-
face specifications and data encoding means, they directly use widespread,
ubiquitous standards such as XML or HTTP. The entry ticket to those
technologies is rather low compared to previous approaches, which makes it
possible to reuse legacy applications, hide their implementation (including
the languages and platform choices) and integrate them with other appli-
cations also exposed as services. Another significant improvement in terms
of application integration is that SOA blur the traditional boundaries of in-
formation systems. Indeed, integrating the information systems of different
organizations has traditionally been a costly, largely ad-hoc process (Fowler
[58]), as information systems rarely rely on the same technological choices
(e.g., languages, platforms) and normative choices (e.g., data representa-
tion formats, schema). Technologies such as web services naturally cross
networks without having to develop network-specific bridges (e.g., virtual
private networks) and as such, they make it “natural” to integrate the het-
erogeneous information systems of different organizations.

25

2. Web services

Warehouse

Accounting

Delivery

Provider 1

Provider 2

Composite service

Figure 2.6: A SOA composition scenario.

We give an example of a simple service-oriented architecture on Fig-
ure 2.6. Three in-house services are provided: a warehouse management
service, a delivery service and an accounting service. Each of them is an
interface to larger applications and data sources and may well have been
implemented using different technologies. There are also two external ser-
vices of providers. A composite service is created by using an orchestration
described by a BPEL process (which is not detailed on the figure). When a
purchase order is received, it first checks with the warehouse for availability.
If not, a quote is asked to each provider for provisioning the warehouse with
the cheapest offer. Once this is done, goods are removed from the ware-
house for delivery and the payment is delegated to the accounting. In this
example, it is possible to externalize the accounting of the organization very
quickly: all that is needed is that the accounting provider offers a service
with a compatible interface (or more realistically with minimal adaptation

26

Service-oriented computing

required). This is by itself a significant improvement over traditional inte-
gration across enterprise information systems.

2.2.2 Technologies

We now give an overview of the main web services technologies.

XML-RPC. XML-RPC is the first form of web services to have appeared.
Defined in (Dave Winer [48]), it is a small and simple specification for per-
forming RPC-style communications between systems. As the name sug-
gests, the marshaling and unmarshaling of the invocations are done using
XML for data representation. The marshaled messages are conveyed using
the HTTP protocol (HTTPS can be used for secure point-to-point com-
munications). Both the limited data types and the general minimalism in
XML-RPC have facilitated its widespread adoption.

SOAP. SOAP (Martin Gudgin et al. [89]) is a standard protocol defined
by the W3C for exchanging XML-based messages between web services
and their requesters. It builds on top of widespread existing standards
such as XML, URI, HTTP and SMTP. Basically, a SOAP message is an
XML document that acts as an envelope for the content being sent. In
turn, a SOAP message is meant to be transported over various kind of pro-
tocols, the most used being HTTP / HTTPS. While the usual expected
alternative is the Standard Mail Transfer Protocol (SMTP), real-world ap-
plications have been using IIOP (from Corba), XMPP (Jabber open instant
messaging) or even JMS (Java Messaging System) to route SOAP messages.
SOAP messages can be used either to simulate RCP-style communications,
or document-style communications which are analogous to asynchronous
messaging systems.

REST. The concept of REST7-style services first appeared in (Roy Thomas
Fielding [123]). It is not a formal specification of a technology for building

7REST stands for REpresentational State of Transfer.

27

2. Web services

http://host.tld/forum/chocolate-cooking

http://host.tld/forum

http://host.tld/forum/phd-thesis

http://host.tld/forum/chocolate-cooking/replies/1
http://host.tld/forum/chocolate-cooking/replies/2

GET, POST

GET, POST, PUT, DELETE

GET, PUT, DELETE

hyperlinked to

hyperlinked to

Figure 2.7: A RESTful forum application.

web services. Rather, it is an architectural style for building web services
that emphasizes the semantics of both the HTTP protocol and the Universal
Resource Identifiers (URIs). The core concept behind REST is that appli-
cations expose resources that are accessible through URIs over the HTTP
protocol. A resource may have several representations, i.e., it may use differ-
ent data encodings (e.g., XML, CSV, plain text) to accommodate different
requesters. The resources can be hyperlinked with each other and manip-
ulated through a limited set of verbs: the HTTP protocol methods (GET,
POST, PUT and DELETE, see http://www.w3.org/Protocols/rfc2616/). As
such, resources provide a uniform interface to applications (Roy Thomas
Fielding [123]). We give an example of a RESTful8 forum application on
Figure 2.7. Hyperlinked resources can be manipulated by a HTTP software
agent (e.g., for fetching message threads or posting a reply).

Syndication feeds. Syndication web services have become increasingly
popular with the rise of collaborative online applications such as blogs, wikis
and podcasting. They provide resources called feeds to notify subscribers

8Widely-used jargon for touting an application as being designed using the REST
philosophy.

28

http://www.w3.org/Protocols/rfc2616/

Service-oriented computing

Updates notification feed

http://host.tld/feeds/swupdates

Downloads server

http://host.tld/downloads/swupdates

Applications and devices

polling fetching1 2

Figure 2.8: A simple software updates notification and distribution scenario
based on syndication.

of events (e.g., a new blog post is available). The service does not directly
notifies the subscribers of changes. Rather, it provides a URL-accessible
resource which is updated when needed. Subscribers poll the resource for
changes on a periodical basis. Two XML-based specifications are currently
competing. An example is given on Figure 2.8 where a feed is made available
for publishing software update notifications.

2.2.3 Service description and discovery

We now briefly review standards and specifications for describing static web
services interfaces and discovering them.

Static interface. TheWeb Services Description Language (WSDL) (Erik
Christensen et al. [53]) is an important add-on to SOAP-based web services.
It provides a description of the static interface of such a service, much
like IDL can be used in component technologies. As such, it specifies the
operations supported by the service, the data schemas, and the binding
information used to communicate with the service such as the transport
protocol being used (ex: HTTP) and the location of the service (in the
case of HTTP as a transport protocol, a URL). The messages that can

29

2. Web services

be exchanged between a requester and a service are described using XML
Schema (http://www.w3.org/XML/Schema).

A WSDL document can be used to bind to a SOAP-based service in
two ways: either client invocation source code can be generated from the
WSDL, or the binding can be performed dynamically at runtime. The
latter case is especially possible with dynamic and reflexive languages such
as Java or Ruby, by using the Proxy design-pattern (Gamma et al. [63]).
Once either the static or dynamic binding has been performed, the service
can be invoked.

Registries. TheUniversal Description, Discovery and Integration (UDDI)
protocol (see http://www.uddi.org/) provides a way for repositories to con-
tain service functional and non-functional descriptions. Ultimately, a client
interested in a given discovered service is able to obtain its WSDL descrip-
tion and bind to it after having found it. Another proposal for services
repositories can be found in ebXML (see http://www.ebxml.org/).

WS-*. Several specifications are gravitating around the SOAP web ser-
vices stack (Nezhad et al. [96]), often referred to as “WS-*” specifications.
Most of them are actually irrelevant with no practical adoption in real-world
use-cases (S. Vinoski [124]). Among the very few relevant ones we have:

• WS-Security (http://docs.oasis-open.org/wss/v1.1/), a specification for
end-to-end preservation of the messages confidentiality and authen-
ticity

• WS-Addressing (http://www.w3.org/Submission/ws-addressing/), which
defines a standard representation for endpoint references and routing
schemes (useful for correlation in stateful web services)

• WS-Policy (http://www.w3.org/Submission/WS-Policy/), a standard
representation of quality of service requirements (e.g., security, message-
encoding optimizations, ...)

30

http://www.w3.org/XML/Schema
http://www.uddi.org/
http://www.ebxml.org/
http://docs.oasis-open.org/wss/v1.1/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/WS-Policy/

Business protocols

• WS-Reliability (http://docs.oasis-open.org/wsrm/ws-reliability/v1.1) is
useful for ensuring that messages are properly delivered in contexts
that are not point-to-point communications between the service provider
and its requesters

• WS-Coordination (http://docs.oasis-open.org/ws-tx/wscoor/2006/06/)
andWS-Transaction (http://dev2dev.bea.com/pub/a/2004/01/ws-transaction.
html) allow the coordination of web services.

The next section presents the model of business protocols (Benatallah
et al. [21]) that serves as a foundation of this thesis work as it is suitable
for describing the external behavior of a service with respect to the conver-
sations it supports.

2.3 Business protocols

Static interface descriptions such as WSDL are essential for facilitating the
use of web-service based technologies. There is however a strong need for ab-
stractions of a higher-level than just “data formats and message names”. As
such, there is a consensus over the need for also specifying the dynamic in-
terface of services (Papazoglou and Georgakopoulos [107]; Papazoglou et al.
[108]; Papazoglou and van den Heuvel [109]). In particular, the externally-
observable behavior of a service is important for avoiding invalid conversa-
tions between a service and its requesters. For example, a service may offer
to add goods to a shopping cart and make a payment. A WSDL document
of such a service would give the related message names (e.g., addGoods and
pay) as well as their XML schema. This is clearly insufficient as for instance,
paying before adding goods is most often not a valid business process.

This section first recalls the business protocol model and its usefulness.
It then presents protocol-based analysis before providing a discussion.

31

http://docs.oasis-open.org/wsrm/ws-reliability/v1.1
http://docs.oasis-open.org/ws-tx/wscoor/2006/06/
http://dev2dev.bea.com/pub/a/2004/01/ws-transaction.html
http://dev2dev.bea.com/pub/a/2004/01/ws-transaction.html

2. Web services

2.3.1 Model

The model of business protocols of (Benatallah et al. [16, 18, 21]; Karim
Baina et al. [77]) is the foundation of the work being presented in this thesis.
This model captures all of the conversations that a service supports, i.e.,
the set of ordered message exchanges that are valid (e.g., a purchase order
should not be exchanged before an authentication message). As such, it
provides an abstraction for capturing a service external behavior, allowing
potential requesters to know how to avoid generating invalid conversations,
which is by itself a significant enhancement compared to having “just” a
WSDL description. The model is based on state-charts as it is commonly
accepted as a suitable model for describing behaviors, but alternatives could
have been used as well such as Petri-nets or abstract BPEL (the later cap-
ture the operations orderings in a BPEL process).

login
start answeredlogged

search
searching

answer −

search

P

Figure 2.9: A business protocol of a search engine.

As an example, Figure 2.9 shows a business protocol of a search engine.
States represent the various stages a service may go through while transi-
tions are triggered when a message is received or sent. There is a unique
initial state and many final states. In this protocol, conversations start with
the service receiving a login message (the polarity (+) is used to indicate
that the message is incoming). Following that, a search can be performed
and the results can be retrieved through repeatable sequences of search
– answer messages (again, the polarity (−) is used for messages that are
emitted by the service). The answered state is final: every conversation
that ends in this state is said to be valid. By contrast, an invalid conver-
sation would be search · login · answer. Finally, it should be noted that

32

Business protocols

state names do not have much importance in the model as conversations
are about messages being exchanged.

Business protocols can be useful in several analysis contexts, both at
development and runtime (Benatallah et al. [16, 18, 21]; Karim Baina et al.
[77]). Conformance checking is useful for a service provider to check if
the actual implementation of a service meets a specification which can be
either provided to clients (e.g., in the documentation), or imposed from
standards (e.g., RosettaNet PIPs (RosettaNet [121])). Another one is for a
requester to check that its own client protocol is compatible with a service,
and if it is not, perform some adaptations so as to accommodate the service
protocol to avoid errors. Finally, there are cases were a service needs to
be replaced (e.g., failures, business-driven need for changing partners, etc).
Replaceability analysis is useful so that a new service can be used as an
alternative with minimal impacts on the existing requesters. Especially, it
helps in identifying the potential mismatches at the protocol level so that
adapters can be created. As such, both compatibility and replaceability
analysis can be interesting as part of a service discovery process. In this
work, we are interested in protocol-based compatibility and replaceability
analysis that we outline hereafter.

2.3.2 Protocol analysis

Business protocols allow to perform fine-grained types of compatibility and
replaceability analysis to see if (and how) two services can have interac-
tions based on their protocols (compatibility), or if a service can be replaced
transparently by another one for its current requesters (replaceability). Sev-
eral classes of both compatibility and replaceability have been defined.

• Partial compatibility between two protocols P1 and P2 implies that
at least one conversation can be carried out between two services
implementing these protocols.

• A protocol P1 is fully compatible with P2 if P2 can support all message

33

2. Web services

exchanges that P1 can generate (the inverse is not necessarily true).

• Protocol equivalence occurs when two protocols support exactly the
same conversations.

• Protocol subsumption occurs when a protocol supports at least all of
the conversations of another one.

• Protocol replaceability w.r.t. a client protocol occurs when a protocol
P1 can replace a protocol P2 when interacting with a client proto-
col Pc if every valid conversation between P2 and Pc is also a valid
conversation between P1 and Pc.

• Protocol replaceability w.r.t. an interaction role is similar to the pre-
vious one. It occurs when a protocol P1 can replace a protocol P2 if
P1 behaves like P2 when P2 behaves as an interaction role Pr.

Those analysis classes are characterized by using a set of protocol oper-
ators.

• The intersection operator computes the common conversations that
two services support.

• The parallel composition operator computes the common interactions
that can take place between two services.

• The difference operator computes which conversations are supported
by a given service, but not by a second one.

As an example, two services are partially compatible as long as their
parallel composition yields a non-empty protocol (i.e., at least one conver-
sation is supported). This is the case between the protocol P of Figure 2.9
and P2 of Figure 2.10. They are however not fully compatible as P2 can gen-
erate some conversations that P cannot support (e.g., P does not support
editPreferences messages).

In terms of protocol replaceability, the protocol P of Figure 2.9 can
be replaced by the protocol P1 of Figure 2.10. Indeed, there is protocol

34

Business protocols

login
start answeredlogged

search
searching

answer −

search , advancedSearch

advancedSearch

P1

login −
start donelogged

search−
waiting

answer

P2

editPreferences −

search−

Figure 2.10: Two business protocol for illustrating analysis.

subsumption of P by P1. The two protocols are however not equivalent as
P does not support advancedSearch messages: P cannot replace P1.

2.3.3 Discussion and related work

The following discussion first reviews common model families as business
protocols opted for a state-based model. Notions such as orchestration,
choreography and models for service abstractions are then briefly reviewed.
Finally, research projects for web services life-cycle management are men-
tionned.

Model families. We consider the following three families: state-based
models, activity-based models and rule-based models. State-based models
can be found in a variety of contexts, mainly for describing behavioral
abstractions of a system. In particular, the UML models family ([103])
contains several of them, acting as different “facets” over the representation
of a system depending on the type of information that is to be captured (i.e.,
the general system behavior, the system behavior in a specific choreography,
etc). We briefly recall the most important of them.

35

2. Web services

• Collaboration diagrams allow to represent the message exchanges be-
tween several (distributed) entities. Arrows are drawn between the
entities, carrying both a message and number. The number (part of
a total order) is used to define the messages chronology of the collab-
oration that is being modeled.

• Sequence diagrams are similar to the collaboration diagrams except
that they use lifelines to denote when the object representing the enti-
ties are instantiated and discarded. Messages are exchanged between
those lifelines, optionally having a number as in the case of collab-
oration diagrams. Indeed, the message exchange arrows are usually
sorted vertically by chronological order.

• Statecharts capture all of the possible states of a given entity. The
transitions between states are triggered on events (for example a mes-
sage is received).

Activity-based models have been used to represent systems in an exe-
cutable form (e.g, workflow management systems (Aalst [2])). States rep-
resent activities, and the transitions are triggered when the activities are
finished. Each entity is given a swimlane, and an activity belongs to the
swimlane of the executing entity. In some of those models, the transitions
can carry data flows.

Rule-based systems (Forgy [54, 55]) define behavior through a set of
rules. A rule is triggered when a given event occurs, or when a given
condition is met. The rule then defines an action which is executed. Rule-
based systems have been widely used where the systems behavior need
frequent updates from domain experts writing the rules in domain-specific
languages.

We chose to base our model upon the state-machine formalism. Indeed,
it is commonly used to model the behavior of systems, due to the fact that it
is simple and intuitive. Activity-based models are more suitable for creating
executable models. Finally, rule-based models are a natural fit for complex
decision-making systems where the logic must be frequently updated (e.g.,

36

Business protocols

by business analysts, accountants, etc.). They are however less suitable for
describing behaviors.

Models for service abstractions. Research on web services has natu-
rally lead to various models being proposed for capturing different types of
abstractions. A discussion on modeling web services interactions has been
proposed in (Bultan [39]) and is further discussed in (Bultan et al. [41]).
An approach for web services interfaces was defined in (Beyer et al. [28]). A
model with similar goals as timed protocols had been introduced in (Berardi
et al. [25]), but the timing constraints defined in the model have yet to be
taken into account. A language for web services choreographies called Chor
has been proposed in (Qiu et al. [114]) as a simplification of WS-CDL. WS-
CDL (see http://www.w3.org/TR/ws-cdl-10/) is the reference specification
for choreographies. Tools leveraging WS-CDL for facilitating development
of SOA systems are currently emerging (Kang et al. [76]). BPEL also offers
abstract process for describing the externally observable behavior of a service
composition. Lesser-known alternatives to BPEL include YAWL (van der
Aalst and ter Hofstede [134]; van der Aalst et al. [135]), a general-purpose
workflow language that has support for web services.

All of those approaches share many similarities with this work and the
base model for business protocols of (Benatallah et al. [21]). Surprisingly,
little work has been done on timing abstractions. Also, those works do not
provide a fine-grained range of compatibility and replaceability analysis
classes, which makes our work original. Finally, business protocols and
WS-CDL are complementary, not competing proposals.

Life-cycle management research projects. The ServiceMosaic project
(Benatallah et al. [22]) aims at developing a model-driven framework for
web service life-cycle management. It has a CASE tools set for support-
ing the service development life-cycle that includes facilities for modeling,
analyzing, discovering and adapting web service models (Benatallah et al.
[22]; Nezhad et al. [99]). The work presented in this thesis is part of this
project. ServiceMosaic is presented in larger details in chapter 7.

37

http://www.w3.org/TR/ws-cdl-10/

2. Web services

The Self-Serv project was the precursor of the larger-scope ServiceMo-
saic project: (Benatallah et al. [15, 17]; Sheng et al. [125]). The goal of
Self-Serv was to allow for rapid composition of web services through a
declarative approach. The execution of the obtained composite services
was made in peer-to-peer, dynamic environment.

The project called Astro is another platform for the life-cycle manage-
ment of web services (Trainotti et al. [131]). It features several contributions
in the area of business requirements and verification, service synthesis and
composition, and semantic web services. While it shares some similari-
ties with ServiceMosaic (e.g., adaptation, supporting composition, Eclipse-
based implementation), it focuses more on orchestration models (based on
BPEL) than choreographies (e.g., the business protocol that a service sup-
ports). There is also no model discovery component such as the proto-
col discovery from execution log tools suite that ServiceMosaic provides
(Nezhad et al. [98]). Finally, some works in Astro consider timing abstrac-
tions (Kazhamiakin et al. [78]). However, the work that is presented in this
paper mainly reuses well-known timed automata model-checking techniques
in service-based compositions. As we will see later, our approach makes a
novel use of timed automata for obtaining the decidability and closure of
protocol operators, not for performing straightforward, traditional model-
checking.

While business protocols provide temporal constraints (i.e., the messages
ordering), they do not provide timing constraints (e.g., a payment must be
performed at most 48 hours after having purchased). This thesis revisits the
concepts of business protocols modeling and analysis and enhances them
using timing constraints. The result is a model that supersedes business
protocols with added timing constraints and adapted analysis techniques.
As we established a link between our extended model and timed automata
(Alur and Dill [6]) to obtain theoretical results on the time-aware analysis
of protocols, we present them in the next chapter.

38

Three

Timed automata

We give here some background knowledge on timed automata, a model that
has been extensively used in the field of real-time model checking, and that
will be useful for the remainder of this work. We begin with an overview
of the model before focusing on the common problems (e.g., closure under
complementation and reachability analysis). We then review some classes
of timed automata that are interesting for this work, before finishing with
model checking tools.

This will turn out to be useful later in the remainder of this work.
Indeed, our approach for analyzing services business protocols completely
depends on the closure under intersection and complementation in timed
automata. It also depends on the ability to perform location reachability
analysis using a model checking tool.

3.1 Overview

We start with an overview of the model of timed automata, including its
semantics. We then turn our attention to the “classic” problems such as
closure under intersection or language inclusion.

39

3. Timed automata

3.1.1 Model and semantics

Timed automata were introduced in (Alur and Dill [6]) as an extension
of classical automata (Hopcroft et al. [74]) to model real-time systems.
Some preliminary works appeared in (R. Alur et al. [115]). We start by an
informal example before going through the formalization and semantics of
the model.

s0 s2s1
a

x :=0

b

x5

Figure 3.1: A sample timed automaton A.

Extension of automata with clocks. We take as an example the timed
automaton A depicted on Figure 3.1. At first sight, A is much like a “nor-
mal” automaton: it has locations (e.g., s0, s1 and s2) as well as switches
with labels over the alphabet Σ = {a, b}. There is one initial location s0

while s2 is an accepting location. Hence, an (untimed) word a · b can be
recognized by A while words such as a ·a or b ·a cannot. Timing constraints
are added in A by making use of a clock x which is a continuous variable
over the set of real-valued numbers R≥0. Of course, a timed automaton can
have more than one clock. A recognizes the set of timed words a · b such
that b is recognized at most 5 units of time after a. To do that, the clock
x is reset to 0 when the automaton switches from the location s0 to s1 on
the symbol a. Again, a switch can reset an arbitrary number of clocks.
Initially, every clock is set to 0 and then, they grow synchronously as time
evolves. Clocks can be used in constraints attached to the switches, called
guards, and that can enable or disable a switch depending on how those
boolean functions over the clocks evaluate. Here, the clock x is used in the
guard of the b-labeled switch so that b cannot be recognized when (x ≥ 5)
is true.

40

Overview

Time elapses in the locations, while the switches are instantaneous. It
is also possible to bound the time spent in the locations by defining clocks
constraints called invariants, which can be used to force switches to be
fired before the invariants conditions become violated. Indeed, it is a re-
quirement that time can always elapse in the locations. Timed automata
recognize timed words which are sequences in which a non-negative real
value is attached to each symbol. For example w = (a, 0) · (b, 1) is a timed
word where b has been recognized 1 unit of time after a. More precisely,
a timed word over an alphabet Σ is a sequence (a0, t0) · (a1, t1) · · · (an, tn)
such that ai ∈ Σ, ti ∈ R≥0 and t0 < t1 < · · · < tn.

Clocks valuations. In what follows, we reuse the same notations as in
(Alur and Dill [6]; Rajeev Alur [117]). Given a set of clocks X with their
values being in R≥0, a clocks valuation v for X is a function X −→ R≥0 that
associates to each clock x ∈ X its value v(x). The set of clocks valuations
for X is written RX≥0. The set of clocks constraints over X is C(X), built
using boolean combinations of atomic constraints of the form x # c with
x ∈ X, # ∈ {=, 6=, <,≤, >,≥} and c ∈ Q. C≺(X) is the restrictions of
C(X) where the clocks constraints are of the form x < c or x ≤ c. A clocks
valuation v satisfies an atomic constraint (x # c) if and only if (v(x) # c) is
true. This allows to check whether a complete constraint g can be satisfied
by a clocks valuation v, denoted as v |= g. Given d ∈ R≥0, v′ = v + d is
the clocks valuation such that v′(x) = v(x) + d for each x ∈ X. Also, given
a subset of clocks r ∈ X, v′ = [r ← 0]v is the clocks valuation such that
v′(x) = 0 if x ∈ r and v′(x) = v(x) if x ∈ X \ {r}.

Definition 1 (Timed automata). (Alur and Dill [6]; Rajeev Alur [117])
A timed automaton A is a tuple A = (Σ, L, L0, Lf , X, I, E) where:

• Σ is the alphabet,

• L is a finite set of locations (or states),

• L0 ⊆ L is the set of initial locations,

• Lf ⊆ L is the set of final locations (or accepting states),

41

3. Timed automata

• X is a finite set of clocks,

• I : L→ C≺(X) associates an invariant to each location

• E ⊆ L× C(X)× Σ× 2X × L is a finite set of switches (or switches)
e = (l, g, a, r, l′) ∈ E from l to l′, where g is the guard, r is the set of
clocks to be reset and a is the label.

A timed automaton A recognizes timed words that are sequences of the
form (a1, t1) · (a2, t2) · · · (an, tn) where given i ∈ {1, 2, · · · , n}, ai ∈ Σ is a
symbol from the alphabet and ti ∈ R≥0 is the time at which ai is recognized
by A. The set of timed words recognized by a timed automaton A is the
timed language denoted as L(A).

Semantics. The semantic of a timed automaton A is defined using an
(infinite) timed labeled transitions system (LTS). Each state of the LTS
is a pair (l, v) ∈ L × RX≥0, called a configuration, where l is the current
location in A and v is a clocks valuation. There are two types of tran-
sitions: action transitions (labeled with a symbol of Σ) and time transi-
tions (labeled with a real-valued duration). More precisely, the semantic of
A = (L,L0, Lf , X, I, E,Σ) is given by the LTS SA = (S, s0,→,Σ) where:

• S = L× RX≥0,

• s0 = (l0, v0) with l0 ∈ L0 and v0(x) = 0 ∀x ∈ X,

• → is the transition relation:

– action transitions: (l, v) a−→ (l′, v′) if and only if there exists
e = (l, g, a, r, l′) ∈ E such that v |= g, v′ = [r ← 0]v and
v′ |= I(l′)

– time transitions: if d ∈ R≥0 then (l, v) d−→ (l, v + d) if and only
if v + d |= I(l).

The LTS SA starts from an initial state made from an initial location
and each clock set to 0. Then, either instantaneous action transitions occur

42

Overview

(possibly resetting some clocks), or time transitions allow the clocks to grow
synchronously. The executions over SA match the timed words that can be
recognized by A when they start from the initial state of SA and they can
reach a final state.

s0,{x=0 } s0,{x=0.5}

s1,{x=0 } s1,{x=4.5 }

s2,{x=4.5 }

a

b

a

0.5

4.5

action transition

time transition

b

Figure 3.2: The LTS SA associated to the timed automaton A of Figure 3.1.

Let us consider again A defined on Figure 3.1 and its semantic LTS
SA which is depicted on Figure 3.2. (s0, 0) 1−→ (s0, 1) 0.25−→ (s0, 1.25) a−→
(s1, 0) 0.1−→ (s1, 0.1) b−→ (s2, 0.1) is a valid execution over SA which recog-
nizes the timed word (a, 1.25) · (b, 1.35) of the timed language L(A).

3.1.2 Classic problems

We now review some classic problems for timed automata. They are sum-
marized in Table 3.1.

Closure properties. Closure of timed automata under the following op-
erators has been studied in (Alur and Dill [6]): union, intersection, comple-

43

3. Timed automata

Problem Results
Union Closed
Intersection Closed
Projection Closed
Complementation Not closed
Language inclusion Undecidable
Language equivalence Undecidable
Universality Undecidable
Language emptiness / reachability
analysis

PSPACE-Complete

Table 3.1: Classic problems for (general) timed automata (Alur and Dill
[6]).

mentation and projection1. Union and intersection are based on extensions
of the classical procedures on automata (Hopcroft et al. [74]). The closure
under union and intersection is relatively easy. Closure under union comes
from the fact that timed automata are indeterministic and support more
than one location. Intersection is similar. The problematic non-closure un-
der complementation is a consequence of indeterminism, as a timed word
may have more than one execution. The proof is based on the observation
that a timed word can have an execution ending in a final location and one
in a non-final location, making it impossible to construct the complement
like for untimed automata.

Timed language inclusion, equivalence and universality. We briefly
introduce these three decision problems. Given two timed automata A

and A′, the timed language inclusion problem refers to checking if L(A) ⊂
L(A′). Similarly, the timed language equivalence problem refers to check-
ing if L(A) = L(A′). Finally, the universality problem refers to checking
whether a timed automaton A defined over an alphabet Σ is able to rec-
ognize all of the possible timed words over Σ. These problems require the
ability to complement timed automata. As an example, checking whether

1Projection allows to map a timed language from one to another with a different
alphabet (symbols that are not mapped are replaced by ε).

44

Overview

L(A) ⊂ L(A′) reduces to checking for the timed language emptiness of the
automaton A′ ∩ A. Unfortunately, timed automata are not closed under
complementation, making these problems undecidable. Checking for the
emptiness of a timed language is a PSPACE-Complete problem. This
problem is also referred to as the location reachability problem (i.e., a timed
language is empty if no final location can be reached.

off light bright

press

press
x :=0

press
x≤3

press
x3

off lightpress
x :=0

press
x=10

off lightpress
x :=0

press
x=1

Model

Property 1 Property 2

(model from http://www.cis.upenn.edu/~alur/Talks/sfm-rt-04.ppt)

Figure 3.3: A model checking example that reduces to state reachability
analysis.

Verification through test automata. In this case, the property to ver-
ify is expressed as a timed automaton, referred to as a test timed automaton.
The verification is performed by a reduction to a reachability / emptiness
analysis. We give an example on Figure 3.3. The system that is modeled is
a light controller. The light is initially turned off, and pressing it will turn
it on. However, if the button is pressed twice quickly (within at most 3
units of time), then the light will be brighter. Finally, pressing the button
another time will turn the light off.

We express two properties on this system using timed automata. The
first one (property one) is used to test whether pressing the button once,
then 10 units of time later will turn it off again. This is property that we

45

http://www.cis.upenn.edu/~alur/Talks/sfm-rt-04.ppt

3. Timed automata

expect to be satisfied by the modeled system. In turn, we do not expect the
second property to be true: when pressed quickly twice, the light should
not be turned off.

Model-checking through the mean of test automata is not always the
best option, as verification reduces to a timed language inclusion checking
problem. While checking for timed language emptiness is decidable (yet
PSPACE-Complete), the non-closure under complementation is prob-
lematic. We will see later in this chapter that some classes of timed au-
tomata do not suffer from this issue. Back to the example of Figure 3.3,
this is possible as the automata are deterministic.

3.2 Classes of timed automata

Several classes and extensions of timed automata have been studied. Indeed,
the fact that the decision problems seen above are undecidable in the general
case motivated such research directions. We summarize here the principal
classes and extensions of timed automata that turned out to be useful in the
context of this work. Table 3.2 summarizes the results regarding the timed
language inclusion and emptiness checking problems, while Table 3.3 details
the results on expressiveness. Further pointers can be found in (Bouyer
and Laroussinie [32]; Joel Ouaknine and James Worrell [75]; Rajeev Alur
[117]; Rajeev Alur and P. Madhusudan [118]; Stavros Tripakis [129]).

Deterministic timed automata. The class of deterministic timed au-
tomata has been defined in (Alur and Dill [6]). It restricts the definition of
timed automata by:

1. allowing only a single initial location, and

2. requiring that given two switches from the same source location having
the same input symbol, their guards are disjoint so as to preserve
determinism.

As such, the timed automaton of Figure 3.1 is deterministic. This is also
true for the timed automata depicted on Figure 3.3. Each timed word that

46

Classes of timed automata

Class or extension Emptiness checking Language inclu-
sion

Timed automata PSPACE-Complete Undecidable
Deterministic timed automata PSPACE-Complete Decidable
Event-clock automata PSPACE-Complete Decidable
Robust timed automata PSPACE-Complete Undecidable
ε-transitions without clocks re-
sets

PSPACE-Complete Undecidable

ε-transitions with clocks resets PSPACE-Complete Undecidable
Diagonal constraints (x− y # c) PSPACE-Complete Undecidable
Additive constraints (x+ y # c) Decidable for 1 or 2 clocks,

open problem for 3 clocks and
undecidable starting from 4
clocks (Bérard and Dufourd
[24])

Undecidable

Constraints of the form x = 2y Undecidable (Alur and Dill
[6])

Undecidable

Constraints with irrational con-
stants

Undecidable (Miller [93]) Undecidable

Non-standard (x := 0) clocks re-
sets

Decidable for x := c, unde-
cidable for x := x− 1 and de-
cidable for x := x + 1 if di-
agonal constraints are not al-
lowed (Bouyer et al. [33])

Undecidable

Table 3.2: Emptiness and timed language inclusion checking results for
some classes and extensions of timed automata.

is recognized by a deterministic timed automaton has exactly one accepting
run over it. Deterministic timed automata form a strict subclass of timed
automata (they are less expressive). The problem of the determinization
of indeterministic (untimed) automata is decidable (Hopcroft et al. [74]).
This is however not the case for timed automata (Stavros Tripakis [129]).

Event-recording timed automata. Event-clock automata, and more
particularly event-recording automata form an interesting class of timed
automata (Rajeev Alur et al. [119]). In this model, clocks are assigned to
the input symbols. Each time one of symbol is recognized (e.g., a), its as-
sociated clock is reset (e.g., xa). The time domain T is the set of positive
reals R≥0 augmented with the ⊥ symbol to denote the fact that a given
symbol has not been recognized yet (i.e., every clock is set to ⊥ initially).

47

3. Timed automata

Class or extension Observations
Deterministic timed automata Strictly less expressive than timed automata
Event-clock automata Indeterministic event-clock automata can always

be rendered deterministic while this is not the
case for (general) timed automata (Rajeev Alur
et al. [119])

Robust timed automata Robust timed languages are open and their ex-
pressiveness is not comparable with the one of
timed languages (Rajeev Alur and P. Madhusu-
dan [118])

ε-transitions without clocks re-
sets

The silent transitions can be removed (Volker
Diekert et al. [136])

ε-transitions with clocks resets Strictly more expressive than general timed au-
tomata: the silent transitions that reset clocks
cannot be removed in general (Beatrice Berard
et al. [13]; Bouyer et al. [35]; Volker Diekert et al.
[136])

Diagonal constraints (x− y # c) More concise than timed automata, but not more
expressive (Beatrice Berard et al. [13])

Additive constraints (x+ y # c) More expressive than timed automata

Table 3.3: Expressiveness of some classes and extensions of timed automata.

The fundamental property in event-recording automata is that the value
of clocks only depends on the input word. The consequence of this is that
such automata are determinizable (i.e., an indeterministic event-recording
automaton can always be transformed into a deterministic one that rec-
ognizes the same language) and complementable (i.e., event-recording au-
tomata are closed under complementation). Extensions of event-recording
automata can be defined as long as the value of clocks only depends on the
input word.

Silent transitions. In the case of untimed automata, they do not add
to the expressiveness and they can be removed easily (Hopcroft et al. [74]).
This is however not the case with timed automata, and as we will see later
in this thesis, this will be a major issue for the decidability of timed pro-
tocol operators, as the model of timed protocols exhibits such transitions.
Indeed, allowing silent (ε) transitions in timed automata strictly adds to
the expressiveness (Beatrice Berard et al. [13]; Bouyer et al. [35]; Volker

48

Classes of timed automata

Diekert et al. [136]). Complex techniques exist to remove the ε-transitions
when they do not reset clocks (Volker Diekert et al. [136]). However, this is
not possible in the general case when they do reset clocks, i.e., there exist
switches of the form l

ε,g,{x}−−−−→ l′. Of special interest is the notion of precise
actions defined in (Beatrice Berard et al. [13]), as it gives a tool for proving
that some timed languages cannot be recognized by a timed automaton
without ε-labeled switches. We will leverage this tool when studying the
expressiveness of timed protocols.

Other classes. Some classes or extensions have different expressiveness
levels compared to (general) timed automata. The expressiveness of the
class of Robust timed automata2 cannot be compared to the one of timed
automata (Rajeev Alur and P. Madhusudan [118]). The classical decidabil-
ity problems (reachability / emptiness, inclusion) remain unchanged.

The closure and decidability results remain unchanged compared to
(general) timed automata in the following cases: constraints of the form
x = 2y, constraints with irrational constants, and allowing non-standard
(i.e., x := 0) clocks resets.

In most cases, the emptiness / reachability problem is decidable (yet
PSPACE-Complete) despite the language inclusion problem being un-
decidable because of non-closure under complementation. However, some
forms of modified clocks constraints and clocks resets can render it unde-
cidable (Alur and Dill [6]; Beatrice Berard et al. [13]; Bérard and Dufourd
[24]; Bouyer et al. [33, 35]; Miller [93]; Volker Diekert et al. [136]).

Other formalisms. Several formalisms have been introduce to capture
timing constraints. Among them, a common abstraction is to define delays
with minimum and maximum values on timed transition systems: (Hen-
zinger et al. [70]; Lynch and Attiya [86]; Merritt et al. [92]; Pnueli and Harel
[112]).

2Briefly, a robust timed automaton recognizes timed words with some fuzziness in the
event dates as no real world system can be expected to be as precise as timed automata
expectations.

49

3. Timed automata

Petri nets support extensions with timing requirements (Girault and
Valk [64]). Timed Petri nets are an extension where a transition can be
fired only if its enabling duration is in a certain time window (Merlin [91]).
In turn, Timed Petri nets associate to each transition a set of time windows
(Ramchandani [120]). The tokens that circulate in timed Petri nets are
given an age. A transition can then be fired only by tokens whose ages are
in one of the time windows of the transition.

Lots of contributions bridging timed automata and timed Petri nets have
been made. The work done in (Bouyer et al. [34]) is of most interest as it
proves that timed Petri nets are not more expressive than timed automata
with respect to the language equivalence. It introduces a class called Read-
arc timed Petri nets which is language-equivalent to timed automata.

Temporal logics. They have been traditionally used for formal verifica-
tion purposes. A temporal logic formula expresses some form of qualitative
time property such as “when the light is off, pressing the button will turn
it on”. To put it another way, temporal logics allow to specify the order of
events. However, it is not possible to express quantitative time properties
such as “when the light is off and the button is pressed twice in less than 2
seconds, the light will be bright”.

The purpose of a temporal logic formula is to check wether there exists
a path to a state that satisfies the formula in the considered system. Two
branches of temporal logics exist:

1. linear-time temporal logics allow reasoning over a single time line, and

2. branching-time temporal logics allow reasoning over several time lines.

CTL, which stands for computational tree logic, is the traditional branching-
time logic (Clarke et al. [45]) while LTL (linear temporal logic) is the tra-
ditional linear-time logic (Pnueli [111]).

Both CTL and LTL have been extended to support quantitative time.
TCTL (timed computational tree logic) (Henzinger et al. [71]) extends the
branching-time logic CTL. Similarly, MTL (metric temporal logic) (Koy-

50

Software tools

mans [81]) and TPTL (timed propositional temporal logic) (Alur and Hen-
zinger [7, 8]) extend the linear-time temporal logic LTL to support quanti-
tative time. Some fragments of MTL have been defined to seek better de-
cidability results: as MITL (metric interval logic) (Alur et al. [12]), Safety-
MTL (Ouaknine and Worrell [105]) and coFlat-MTL (Bouyer et al. [36]).

Logic Model-checking problem
TCTL PSPACE-Complete (Alur et al. [9, 10])

MTL over finite runs Decidable and non-primitive recursive under the pointwise
semantics (Ouaknine and Worrell [104])
Undecidable under the continuous semantics (Alur et al.
[12])

MTL over infinite runs Undecidable under pointwise semantics (Ouaknine and
Worrell [106])

TPTL over finite runs Undecidable under the pointwise and continuous semantics
(Alur and Henzinger [8])

MITL over infinite
runs

EXPSPACE-Complete (Alur et al. [12])

Safety-MTL over infi-
nite runs

Decidable but not primitive-recursive under the pointwise
semantics (Ouaknine and Worrell [105])

coFlat-MTL over infi-
nite runs

EXPSPACE-Complete under the pointwise semantics
(Bouyer et al. [36])

Table 3.4: Results on the problem of model-checking using timed temporal
logics.

The results on the problem of model-checking using timed temporal
logics are summarized in Table 3.4. The branching-time logic TCTL offers
very good decision problem properties while the linear timed temporal logics
are much harder, if not decidable. The research on linear logics has been
motivated by the fact that they are sometimes more powerful than the
branching ones. A detailed survey on timed temporal logics can be found
in (Bouyer [31]).

3.3 Software tools

We briefly introduce the general principle of model checking that we illus-
trated on Figure 3.4. It refers to the process of testing properties of a system
for which a model is given. The model checker is a “black box” component

51

3. Timed automata

?

Model

Model checker

Property

''yes''

''no''

Figure 3.4: Principle of model checking.

that takes both of them as inputs then outputs whether the property is
satisfied or not. Some model checkers can also output a trace, mostly to
give details of why the property cannot be satisfied (they are sometimes
referred as error traces).

The types of properties to be checked are usually classified in the fol-
lowing categories, although a model checker does not especially distinguish
them. Reachability properties check whether a property can possibly be sat-
isfied by the system (e.g., “the light can be switched off”). Safety properties
state that something which is considered as “bad” will never happen in the
system (e.g., “the light cannot stay on for more than 20 minutes”). Finally,
liveness properties state that something which is considered as “good” will
eventually happen (e.g., “when the light is off, pressing the button turns it
on”).

Various timed automata model checkers have been proposed. They tar-
get different classes of timed automata as a model. They leverage timed
temporal logics for expressing properties and query the models. We briefly
present the main tools.

52

Software tools

Tool Model Temporal logic
Kronos (Bozga et al.
[38]; Daws et al. [50])

Timed automata TCTL

HyTech (Henzinger et al.
[72])

Hybrid automata (Alur
et al. [5, 11])

ICTL, an extension of
TCTL (Alur et al. [11])

UPPAAL (Behrmann
et al. [14])

Hybrid extension of timed
automata

Subset of TCTL

Tempo (Maria Sorea [88]) Event-recording timed au-
tomata

Event-recording fixpoint
logic defined in (Maria
Sorea [88])

Table 3.5: Model checking tools for classes and extensions of timed au-
tomata.

Figure 3.5: A screenshot of UPPAAL.

53

3. Timed automata

The tools are presented in Table 3.3. Not surprisingly, branching timed
temporal logics are popular given the decidability of the model checking
problem. Tempo is specialized on event-recording timed automata and
uses a logic developed on purpose. Kronos is the only tool to use “canon-
ical” timed automata while UPPAAL and HyTech both use hybrid exten-
sions. Briefly, an hybrid system (Alur et al. [5]) features both continu-
ous (e.g., variables in R) and discrete behavior (e.g., variables in N). At
the time of the writing of this document, it should be noted that UP-
PAAL is the only actively developed project. UPPAAL has also managed
to emerge from an academic research prototype to a commercial product
for model checking. It has been used in several industrial studies (a com-
plete list is available at http://www.it.uu.se/research/group/darts/uppaal/
examples.shtml). We give a few references containing such case studies:
(Aceto et al. [3]; Bengtsson et al. [23]; Bowman et al. [37]; D’Argenio et al.
[47]; David and Yi [49]; Havelund et al. [68, 69]; Lindahl et al. [84]; Lönn
and Pettersson [85]).

A screenshot of the UPPAAL simulation environment is available on
Figure 3.5. A more detailed presentation of UPPAAL is available in the
appendix from page 177.

54

http://www.it.uu.se/research/group/darts/uppaal/examples.shtml
http://www.it.uu.se/research/group/darts/uppaal/examples.shtml

Part II

Protocol modeling and analysis

55

Four

Timed protocol modeling

This chapter presents the model of timed business protocols. It is a for-
malization of the business protocol introduced in (Benatallah et al. [21])
and the timing constraints primitives that were mentioned in (Benatal-
lah et al. [16, 18]). By investigating (online) applications to define which
type of timing abstraction would turn out to be useful in practice for de-
scribing the externally-observable behavior of services, we identified two
primitives: C-Invoke constraints for defining time windows of availabili-
ties and M-Invoke constraints for defining implicit actions that occur when
some forms of delays expire. The introduction of timing constraints into
the model poses significant challenges, especially when it comes to studying
the impacts on protocol analysis as we will see in the next chapters. We
obtained a characterization of timed protocols and their operators by es-
tablishing a link with the field of timed automata (Alur and Dill [6]). This
way, we will see that introducing timing constraints in business protocols
is a significant challenge as it makes protocol analysis much more complex
than in the untimed case. More specifically, we will see that with timed au-
tomata, complementation and subsumption are generally undecidable while
M-Invoke constraints are hard to express.

The chapter is structured as follows. We first provide a concise discus-
sion on the timing abstractions that we identified. Then, we present the

57

4. Timed protocol modeling

model of timed business protocols that we envisioned as a conceptual model.
Next, we explain how timed protocols can be equivalently expressed using
timed automata (Alur and Dill [6]), a formal framework that has been ex-
tensively investigated in formal verification research works (Behrmann et al.
[14]; Rajeev Alur and P. Madhusudan [118]). This will later allow us to de-
rive theoretical properties for the model of timed protocols by establishing a
semantic-preserving mapping between the two models. Finally, we provide
a discussion.

4.1 Timing abstractions

Before designing our web services business protocols model, we started by
investigating the timing abstractions that were needed to capture the ones
that would be useful in practice. We first present three motivating exam-
ples, then introduce the two timing abstraction primitives that we have
identified.

4.1.1 Motivating examples

Timing constraints appear in countless scenarios. We give here three exam-
ples related to web services and business processes were timing constraints
play a critical role.

E-Commerce portals

The sales conditions notices of many E-Commerce portals provide timing
constraints. Let us consider a classic example of a plane ticket seller portal.
A potential purchaser is usually allowed to put a seat on hold for a day
or two before a confirmation involving the effective payment is made. The
seller implicitly releases the seat holding and cancels the purchase process
after a delay (e.g., 24 hours) without a confirmation or canceling notification
from the buyer. There are other examples in the field of E-Commerce
examples. For example goods selling portals are usually entitled by law
regulations to allow a buyer to return a purchase within a short delay such

58

Timing abstractions

as one week after the delivery. They are often also constrained to respect
delays when dealing with customers for operations such as the deliveries or
the refunding of returned purchases.

Figure 4.1: A BPEL process that uses an alarm.

BPEL processes

The Business Process Execution Language (OASIS [102]) is the major spec-
ification in the field of long-running web services orchestrations. A BPEL
process is able to achieve a complex business process using a set of web
services. Figure 4.1 exhibits a sample purchasing BPEL process. The pro-
cess starts by receiving a purchase order. A BPEL Assign operation is then
executed to prepare the data for the invocation of a service providing a
ValidatePurchaseOrder operation. This operation is used to delegate the

59

4. Timed protocol modeling

processing of the purchase order to a service that will check for various con-
ditions like the ordered items availability, the existence of contracts between
the requesting entity and the provider, the validity of the chosen payment
option and checking that the requesting entity does not have outstanding
debts to the provider. Given that those checkings may take a substantial
amount of time (for examples humans have to be involved for some of the
checkings), the process uses a pick block. It allows to wait for receiving a
response that validates the order. If no response has been received after
an arbitrary delay such as 48 hours, the process is woken-up to reject the
purchase. BPEL actually exhibits two similar time-related constructs: on-
Alarm and wait. The former can be used in pick blocks, while the later is
a normal BPEL operation that will put the process execution on hold for a
duration or until a fixed date is reached.

RosettaNet PIPs

RosettaNet (RosettaNet [121]) is an industrial consortium which aims at fa-
cilitating the transactions among the supply chains of trading partners using
specifications called the Partner Interface Processes (PIPs) that thoroughly
detail the processes involved in those transactions. The RosettaNet PIPs
exhibit time-dependent behaviors. Let us focus on the PIP 3A4 depicted
on Figure 4.2. It specifies how a seller and a buyer can process a purchase
order. This PIP specifies the following timing constraints:

• the PurchaseOrderRequestAction and the PurchaseOrderConfirma-
tionAction must be acknowledged within 2 hours

• the reply to the PurchaseOrderRequestAction must be sent within 24
hours.

4.1.2 Timing abstraction primitives

The three motivating examples that we gave illustrate the need for cap-
turing timing abstractions into web services and business process models.
We did not limit our investigations to these examples in order to identify

60

Timing abstractions

Buyer Service Seller Service

1. request(PurchaseOrderRequestAction)

1.1 signal(ReceiptAcknowledgment)

1.2 response(PurchaseOrderConfirmationAction)

1.2.1 signal(ReceiptAcknowledgment)

Figure 4.2: Sequence diagram of the RosettaNet PIP 3A4 (Request Pur-
chase Order).

61

4. Timed protocol modeling

the primitives that would be useful to capture the vast majority of cases
appearing in practice. A major difficulty when designing a model is to find
a good expressiveness level tradeoff. Indeed, a simplistic model does not
capture all of the cases while an overly complex one becomes hard to use
for practitioners, and may lead to undecidability problems in algorithms.

The starting point of this work was done in (Benatallah et al. [16]; Karim
Baina et al. [77]). Using a similar approach based on the exploration of
existing web portals and E-Commerce websites, we found that the following
timing primitives would be useful.

Time windows. Many actions need to be available only during certain
time windows. For example, a quotation usually has a finite validity, and
a purchase cannot be made in the same conditions once it has expired.
Another example in the commerce domain is the case of discounts which
can be valid only for a limited period of time.

Timeouts. Most software systems support the notion of timeout, for ex-
ample to avoid locking resources for an unlimited amount of time and to
handle partnering components errors. Considering again an example in the
commerce domain, a purchase order needs to be paid to be validated. A
seller system will usually discard the business transaction after a given delay
if the buyer did not actually send the payment.

4.2 Extending business protocols with
temporal abstractions

We now present the timed business protocol model. We first illustrate it
informally, then provide a formalized definition.

62

Extending business protocols with temporal abstractions

4.2.1 Timed business protocols

Our model is an extension of the business protocol model (Benatallah et al.
[18, 21]) which is built upon the traditional state-machine formalism. In-
deed, it is commonly used to model the behavior of systems, due to the
fact that it is simple and intuitive. In the model, states represent the dif-
ferent phases that a service may go through during its interaction with a
requester. A transition label is a message supported by the service. It has
a polarity which is positive (+) if the message is incoming, or negative (−)
if it is outgoing. Transitions are triggered when their associated messages
are sent or received. Hence, a state identifies a set of outgoing transitions,
and therefore a set of possible messages that can be either sent or received
when the conversation with a requester is in this state.

Start Logged

Vehicle
Selection

PreApproval
Application

Payment
Estimation

Credit
Approved

Credit
ApplicationCancelled

Credit
Expired

Application
Rejected

Credit
Accepted

T 1: login
T 2: budgetPlanner

T 3: leaseOrBuyTest T 4: accountManagement

T 6: selectVehicleT 5: preApproval

T 7 : reject − T 8: approved −

T 9: selectVehicle

T 10:
M−InvokeT 8=30d

T 15:
M−InvokeT 13=30dT 11: cancel

T 12: modifySelection

T 13: estimatePayment

T 18: reapplication

T 14: fullCredit
C−InvokeT 1324h

T 17: reject −

T 16: accept −

S

S

initial state

final state

Legend

Figure 4.3: A timed protocol of an online financing service.

63

4. Timed protocol modeling

As an example, the protocol depicted on Figure 4.3 (inspired by the
Ford Credit web portal) is initially in the Start state, and requesters begin
a conversation by sending a login message, moving to the Logged state.

In the figure, the initial state is indicated by an unlabeled entering ar-
row while final states are double-circled. A conversation is accepted when
ending in such a final state. Hence, a sequence of messages login(+) ·
preApproval(+) · reject(−) is a conversation supported by the protocol,
while selectV ehicle(+) · login(+) is not: no transition for a selectV ehicle
message is available from the Start state, the two messages cannot be or-
dered this way, and the conversation does not end in a final state. Business
protocols must be deterministic, as the requesters always need to be able
to determine in which state the service is, else much of the purpose of the
protocol specification would be lost.

We consider the following two extensions to the base protocol model:

1. C-Invoke constraints specify time windows within which a transition
can be fired. Outside of those time windows, the transition is disabled,
and exchanging the associated message results in an error.

2. M-Invoke constraints specify when a transition is automatically fired.

The obtained model is called timed (business) protocol model. C-Invoke
constraints can be attached to explicit transitions for which a message is
exchanged between the service provider and its requesters. The absence
of C-Invoke constraint on an explicit transition means that it can be fired
from its source state at any time. By contrast, M-Invoke constraints are
associated to implicit transitions. They model state changes in conversa-
tions once a delay has elapsed (a typical example being a timeout). They
are not related to message exchanges between the service provider and its
requesters. Implicit transitions are analogous to the silent transitions in the
automata theory (Hopcroft et al. [74]) and we associate the empty word ε
as the label of those transitions. There is however a significant difference

64

Extending business protocols with temporal abstractions

compared to “classical” automata: they cannot be removed in the general
case as we will see later.

Continuing with the example protocol depicted on Figure 4.3, it is in-
dicated that a full credit application is accepted only if it is received at
most 24 hours after a payment estimation has been made. This behavior
is specified by tagging the transition T14 : fullCredit(+) with a time con-
straint C-Invoke(T13 ≤ 24h), i.e., T14 can only be fired within a time window
[0h, 24h] after T13 has been fired. T10 has a constraint M-Invoke(T8 = 30d),
meaning that once a pre-approval application has been approved (T8), a
requester is given 30 days to select a vehicle (T9). If it does not continue
the conversation by sending a selectV ehicle message within the next 30
days, then the service provider will automatically fire T10 and move to the
CreditExpired state, ending the conversation. Finally, it should be noted
that the presence of an implicit transition from a given state affects the time
constraints of the explicit transitions outgoing from the same state. Indeed,
T10 implies that T9 can only be fired within a time window matching the 30
days. Hence, a constraint C-Invoke(T8 < 30d) is implicitly associated with
T9 because of the M-Invoke constraint of T10.

Both C-Invoke and M-Invoke constraints are orthogonal. Indeed, we
will see in Theorem 1 that the transitions having M-Invoke constraints
strictly increase expressiveness of our model. Naturally, the usefulness of
C-Invoke constraints can be questioned as in many cases, a C-Invoke -free
construction can be made by using extra states and M-Invoke constraints
on implicit transitions. Let us consider the examples of Figure 4.4. The case
(a) is simple as the C-Invoke constraint is easily translated using M-Invoke
by adding an extra state s′. This is however not true in the general case
as the (b) counter example shows as it yields the following problem: k ∈ Q
cannot be determined as the set of rational numbers is infinite, hence we
cannot find a value for k that would be “close-enough” to 3 for ensuring
that a(+) is only received when T1 is exactly equal to 3.

65

4. Timed protocol modeling

s s1

s2

a ,C−InvokeT 13

b

s s1

s2

a

b

s'

 ,M−InvokeT 1=3

b

s1 s2
a ,C−InvokeT 1=3

s1
 ,M−InvokeT 1=3

s' s2
a

s''
 ,M−InvokeT 1=k

(a) (b)

Figure 4.4: Examples for illustrating why both C-Invoke and M-Invoke
are necessary.

4.2.2 Formalization

Syntax

Before giving the definition of timed protocols, we need to formalize the
C-Invoke and M-Invoke constraints. Let X be a set of variables referring
to transition identifiers: if r is a transition then Tr ∈ X is the variable
referring to this transition. We consider the two kinds of time constraints
defined over a set of variables X using the following grammars:

• C-Invoke(c) with c defined as follows:

c ::= x op k | x− x′ op k | c ∧ c | c ∨ c

with op ∈ {=, 6=, <,>,≤,≥}, x ∈ X , x′ ∈ X and k ∈ Q∪ {⊥}, where
Q denotes the set of positive rational numbers,

• M-Invoke(c) with c defined as follows:

c ::= (x = k) ∧ c′ | c ∧ c | c ∨ c

66

Extending business protocols with temporal abstractions

with x ∈ X , k ∈ Q∪ {⊥} and c′ being defined like in the grammar of
C-Invoke constraints.

The following is the definition for timed business protocols, extending
the business protocols model (Benatallah et al. [18, 21]).

Definition 2. A timed business protocol is a tuple P = (S, s0,F , M,X , C,R)
where:

• S is a finite set of states, with s0 ∈ S being the initial state.

• F ⊆ S is the set of final states. If F = ∅, then P is said to be an
empty protocol.

• M = Me ∪ {ε} is a finite set of messages Me augmented with the empty
message ε. For each messagem ∈ Me, we define a function Polarity(P ,m)
which will be positive (+) if m is an input message in P, and negative
(−) if m is an output message in P.

• We assume that each transition r ∈ R is identified by a unique iden-
tifier id(r). X = {Ti | ∃r ∈ R, Ti = id(r)} is a set of clock variables
defined over the set of transitions R.

• C is a set of time constraints defined over a set of variables X . The
absence of a constraint is interpreted as a constraint which always
evaluates to true.

• R ⊆ S2×M×C is a finite set of transitions. Each transition (s, s′,m, c)
identifies a source state s, a target state s′, a message m and a con-
straint c. We say that the message m is enabled from a state s. When
m = ε, c must be a M-Invoke constraint, otherwise c must be either
a C-Invoke constraint or true.

In the sequel, we use the notation R(s, s′,m, c) to denote the fact that
(s, s′,m, c) ∈ R. To enforce determinism, we require that a protocol has
only one initial state, and that for every state s and every two transitions
(s, s1,m1, c1) and (s, s2,m2, c2) enabled from s, we have either m1 6= m2 or
c1 ∧ c2 ≡ false.

67

4. Timed protocol modeling

Semantics

Variable interpretation. Defining the timed protocol semantics requires
the introduction of the notion of variable valuation. We consider as a time
domain the set of positive reals R≥0 augmented with a special element ⊥
to denote the fact that a transition has never been taken yet. Let X be a
set of variables valued in R≥0. A variable valuation

V : X → R≥0 ∪ {⊥}

is a mapping that assigns to each variable x ∈ X a time value V(x).

We note by Vt(x) the valuation of x at an instant t. In the beginning
(i.e., at instant t0 = 0) we assume that all of the variables are set to ⊥, i.e.,
Vt0(Ti) =⊥,∀Ti ∈ X .

Then, a variable valuation at a time tj is completely determined by a
protocol execution. Consider for example an execution σ = s0 · (m0, t0) ·
s1 . . . sn−1.(mn−1, tn−1)·sn of a protocol P . The valuation of a clock variable
Ti at time tj, with 0 < j ≤ n, is defined as follows:

Vtj(Ti) =

 Vtj−1(Ti) + (tj − tj−1)
0 if Ti = id(R(sj, sj+1,m, c)) is fired from sj to sj+1

It should be noted that for any r ∈ R≥0, k ∈ Q and any comparison operator
op ∈ {<,≤,=, 6=, >,≥}:

⊥ + r = ⊥
⊥ − r = ⊥
⊥ op k = false
⊥ op ⊥ = true if op ∈ {=,≤,≥}
⊥ op ⊥ = false otherwise

Given a variable valuation V and a constraint C-Invoke(c) (respectively,
M-Invoke(c)), we note by c(V), the constraint obtained by substituting each
variable x in c by its value V(x). A variable valuation V satisfies a constraint
C-Invoke(c) (respectively, M-Invoke(c)) if and only if c(V) ≡ true. In this
case, we write V |= C-Invoke(c) (respectively, V |= M-Invoke(c))

68

Extending business protocols with temporal abstractions

Timed conversations. Timed conversations are inspired from the no-
tion of timed words in timed automata as defined in (Alur and Dill [6]).

Let P = (S, s0,F , M,X , C,R) be a timed protocol. A correct execution
(or simply, an execution) of P is a sequence σ = s0 · (m0, t0) · s1 . . . sn−1 ·
(mn−1, tn−1) · sn such that:

1. t0 ≤ t1 ≤ . . . ≤ tn (i.e., the occurrence of times increase monotoni-
cally),

2. s0 is the initial state and sn is a final state of P , and

3. ∀j ∈ [1, n], we have: R(sj−1, sj,mj−1, cj−1) and Vj−1 |= cj−1.

As an example, the sequence σ′ = Start · (login(+), 0) ·
Logged · (preApproval(+), 1) ·PreApprovalApplication · (approved(−), 3) ·
CreditApproved · (ε, 33) · CreditExpired is a correct execution of the fi-
nancing service protocol depicted on Figure 4.3.

If σ = s0 · (m0, t0) · s1 . . . sn−1 · (mn−1, tn−1) · sn is a correct execu-
tion of P , then the sequence tr(σ) = (m0, t0) . . . (mn−1, tn−1) forms a timed
trace which is compliant with P . Continuing with the example, the exe-
cution σ′ of the above service protocol leads to the timed trace tr(σ′) =
(login(+), 0) · (preApproval(+), 1) · (approved(−), 3) · (ε, 33).

During an execution σ of a protocol P , the externally observable be-
havior of P , hereafter called timed conversation of P and noted conv(σ),
is obtained by removing from the corresponding timed trace tr(σ) all of
the non observable events (i.e., all of the pairs (mi, ti) with mi = ε).
For example, during the previous execution σ′, the observable behavior
of the financing service is described by the timed conversation obs(σ′) =
(login(+), 0) · (preApproval(+), 1) · (approved(−), 3).

In the following, given a protocol P , we denote by Tr(P) the set of
timed conversations of P .

69

4. Timed protocol modeling

Timed interactions. Timed conversations describe the externally ob-
servable behavior of timed protocols and, as we will show below, are essen-
tial to analyze the ability of two services to interact correctly. Consider for
example the protocol P depicted on Figure 4.3 and its reversed protocol
P ′ obtained by reversing the polarity of the messages (i.e., input messages
become outputs and vice-versa).

We can observe that when P ′ interacts with P by following a given
timed conversation, P follows exactly a conversation with the reversed
polarities of the messages. For example, if during such an interac-
tion the timed conversation of P is (login(+), 0) · (selectV ehicle(+), 1) ·
(estimatePayment(+), 10) · (fullCredit(+), 30) · (accept(−), 100), then the
timed conversation of P ′ is (login(−), 0) · (selectV ehicle(−), 1) · (estimate-
Payment(−), 10) · (fullCredit(−), 30) · (accept(+), 100).

In this case, we call the path (login, 0) · (selectV ehicle, 1) ·
(estimatePayment, 10) · (fullCredit, 30) · (accept, 100) a timed interaction
trace of P and P ′. The polarities of the messages that appear in interac-
tion traces are not defined. Indeed, each input message m of one protocol
matches an output message m of the other protocol.

More precisely, let P and P ′ be two timed protocols and let τ = (a0, t0) ·
(. . .) ·(an, tn) be a sequence of events in which the polarities of the messages
are undefined. Then τ is a timed interaction trace of P and P ′ if and only
if there exist two timed conversations σ1 and σ2 such that:

1. σ1 ∈ Tr(P) and σ2 ∈ Tr(P ′), and

2. σ1 is the reverse conversation of σ2 (i.e., the conversation obtained
from σ2 by inverting the polarities of the messages), and

3. τ = Unp(σ1) = Unp(σ2) where Unp(σ) denotes the trace obtained
from σ by removing the polarities of the messages.

70

From timed protocols to protocol timed automata

4.3 From timed protocols to protocol timed
automata

The previous section has introduced the model of timed business protocols
which is suitable for describing the external behavior of web services, in-
cluding timing constraints. In turn, the model of timed automata (Alur and
Dill [6]) has been extensively studied as an extension of classical automata
(Hopcroft et al. [74]) with real-valued clocks and conditions on the transi-
tions. Given the extensive research that has been made on timed automata,
we chose to:

1. use timed protocols as a conceptual model, and

2. use timed automata for implementing the behavior of timed protocols,
and

3. derive theoretical properties of timed protocols from existing work on
timed automata.

To do that, we give a mapping from timed protocols to a new class of timed
automata that we identified, called protocol timed automata. However,
defining such a mapping is not a trivial task as we will see that M-Invoke
constraints are not straightforward to implement using timed automata.

This section is structured as follows. We start by an informal, illustrated
walk through the challenges of converting a timed protocol to a timed au-
tomaton that correctly implements its behavior. We then briefly define the
class of protocol timed automata. Then, we formally study the M-Invoke
constraints enforcement techniques for timed automata.

4.3.1 Informal overview of the challenges

We will use the timed protocol from Figure 4.5 as a running example
throughout this section. It will allow us to illustrate the challenges in
creating a timed automaton that behaves like a timed protocol. At first

71

4. Timed protocol modeling

S0 S1

S2

S3 S4

T 1 :a

T 2 :b

T 3: c

T 5:
M−Invoke T 1=10∧T 22

S5

T 4 :
M−Invoke T 2=5

Figure 4.5: A sample timed protocol P used as a mapping running example.

sight, the translation may look straightforward. However as we will see,
preserving the behavior of M-Invoke is surprisingly not an easy task. The
translation is performed using a mapping that we now illustrate. The map-
ping is done in two steps.

The first step to convert a timed protocol P into a timed automaton
A is relatively simple. The mapping of the states of P to the locations
of A is direct (e.g., the state s0 of P is mapped to a location l0). Simi-
larly, each transition in P is translated as a switch with the message name
as its label (e.g., in P , T1 : R(s0, s1, a, true) is translated as a switch
e1 = (l0, true, a, r, l1) in A). Also, the initial location and the final loca-
tions in A correspond to the initial and final states in P .

The transition identifiers from P are used to generate clocks in A. In-

72

From timed protocols to protocol timed automata

l0 l1

l2

l3 l4

a
{xT 1}

b
{xT 2}

c
{xT 3}

 , g2= xT 1=10∧ xT 22
{xT 5}

l5

 , g1=xT 2=5
{xT 4}

Figure 4.6: A sample timed automaton that does not enforce M-Invoke
semantics.

deed, each identifier generates a unique clock which is solely reset on its
corresponding switch. For example the transition T2 generates a clock xT2

in A which is only reset on the switch that was mapped from T2. This
way, we can know when a switch was fired, just like in the timed protocol
P . The conversion of a C-Invoke constraint from P is also direct. For ex-
ample, a constraint C-Invoke(T1 < 3) is mapped to a guard (xT1 < 3). At
this stage, the mapping of P to A yields the timed automaton of Figure 4.6.

Assuming that we mapped implicit transitions as ε-labeled switches with
a direct translation of M-Invoke constraints into guards, the following prob-
lems arise on the timed automaton of Figure 4.6 when the current location
is l2.

1. Indeterminism: g1 and g2 from Figure 4.6 can potentially become

73

4. Timed protocol modeling

satisfied at the same time, and the c-labeled transition can be taken
at the same time as either g1 or g2 is satisfied.

2. Semantics of M-Invoke constraints: if one of the labeled switch
guard g1 or g2 Figure 4.6 becomes satisfied while in l2, it is not nec-
essarily taken. Worse, the c-labeled switch can still be activated af-
terward.

As a consequence, the timed automaton of Figure 4.6 does not respect the
semantics of M-Invoke constraints, and they require more investigations
to both enforce that ε-labeled switches are taken when their guards are
satisfied, and that the other switches become “disabled” as soon as those
guards become satisfied. As we will see, indeterminism is relatively easy to
solve. However, ensuring that the semantics of M-Invoke constraints are
enforced is a more involved task.

Let us have closer look at the various cases when entering a location
that offers one ε-labeled switch. We illustrate that again on the location
l2 and the guard g2 of Figure 4.6. Three cases are possible. The first one
is that l2 is entered before g2 has been satisfied (i.e., (xT1 < 10) is true).
In this case c can be recognized as long as (xT1 < 10). The second case
is that l2 is entered when the valuation of xT1 is such that (xT1 > 10): c
can be recognized at any time since g2 is not going to be satisfied for any
successive clocks valuation. Finally, if l2 is entered while (xT1 < 10), for
any clocks valuation such that (xT1 ≥ 10), c can be recognized if and only if
when (xT1 = 10) was true, (xT2 > 2) was false. The generalization to more
than one constraint is similar, and will be detailed later.

Clearly, a direct translation of the constraints to guards is not enough
to properly represent M-Invoke constructions in timed automata. Because
of that, more elaborated constraints need to be added into the guards than
a direct translation does. More specifically:

1. the mapping needs to rewrite some guards to enforce the expected
behavior of M-Invoke constraints, and

74

From timed protocols to protocol timed automata

2. there is a need for knowing the exact clock valuations when a location
is entered:

a) to know the status of each equality clause in each ε-labeled
switches (e.g., when l2 is entered, do we have (xT2 < 5)? (xT2 >

5)?)

b) to know if the ε-labeled switches guards will be satisfiable or not
(e.g., g2) when their equality clause is satisfied.

Especially, knowing the valuation of each clock when a location was en-
tered is important for enabling / disabling some switches. For example
when entering l2, if xT2 was already greater than 5, then there is no way
the ε-labeled switch whose guard is g1 can be enabled, and thus it should
not disable the c-labeled switch nor the other ε-labeled switch.

In timed automata, the difference between 2 clocks x1 and x2 is a con-
stant until either of them is reset as clocks evolve synchronously. Guards
allow diagonal constraints, i.e., constraints of the form (x1− x2 # k) in the
guards (x1, x2 being clocks and k ∈ Q ∪ ⊥). We use such diagonal con-
straints to capture the the clock valuations when locations are entered: for
each location offering at least one ε-labeled switch, we add a clock that is
attached to this location. Such a clock is reset on every incoming switch of
the considered location. For example on Figure 4.6, we add a clock yl2 which
is reset on the b-labeled switch. Then, the difference between any clock xe
and such a “location clock” yl is the exact value of xe when the location l
was entered. Indeed, when the location is entered, the valuation of yl is 0
as the clock has just been reset. Given that the difference between the two
clocks remains a constant while l remains the current location, (xe − yl) is
the clocks valuation of xe when l was entered.

Using this technique to capture the clock valuations when a location
is entered, the second step of the mapping can be done by rewriting the
guards of every switch whose source location offers ε-labeled switches. The
rewriting must take care of allowing normal (i.e., non ε-labeled switches)

75

4. Timed protocol modeling

to recognize input symbols when M-Invoke constraints allow it, and block
them otherwise. As we will see later in this chapter, we will introduce a
clocks constraint function to capture when a given switch is allowed with
respect to the guard of a ε-labeled switch.

Going back to the example of Figure 4.6 with a new clock yl2 having
been added, observe that g1 must enable the other switches in the following
two cases:

1. (xT2 < 5), and

2. (xT2 > 5) ∧ (xT2 − yl2 > 5)

While the first case is rather easy (i.e., l2 is entered before the equality
clause has been satisfied), the second case uses the valuation of xT2 when
l2 was entered. (xT2 − yl2 > 5) is only true if l2 was entered when (xT2 > 5)
was true.

In a similar manner, g2 enables the other switches in the following cases:

1. (xT1 < 10), and

2. (xT1 > 10) ∧ (xT1 − yl2 > 10), and

3. (xT1 > 10) ∧ (xT1 − yl2 ≤ 10) ∧ (xT2 − xT1 ≤ −8), and

4. (xT1 = 10) ∧ (xT2 − xT1 ≤ −8)

The first two cases are similar to the case of g1. The third case enables the
other switches after the equality clause of g2 has been verified if the clause
(xT2 > 2) is false when (xT1 = 10) is true. Indeed,

(xT2 − xT1 ≤ −8) = (xT2 − xT1 ≤ 2− 10)

and when xT1 = 10, this reduces to

(xT2 ≤ 2)

76

From timed protocols to protocol timed automata

which is the negation of (xT2 > 2). Hence the clause (xT2 − xT1 ≤ −8) is
able to check when g2 cannot be satisfied. Finally the fourth case is similar
as it enables the other switches when the equality clause is satisfied if the
rest of g2 cannot be completely satisfied.

l0 l1

l2

l3 l4

a
{xT 1}

b
{xT 2 , y l 2}

c , permits g1∧ permits g2
{xT 3}

 , g2∧ permits g1
{xT 5}

l5

 , g1∧ permits g 2
{xT 4}

Figure 4.7: A sample protocol timed automaton that does enforce M-Invoke
semantics.

The correct mapping of P to A is given on Figure 4.7, where the “per-
mits” functions are just the cases that we mentioned above. For example,
permits(g1) = (xT2 < 5)∨xT2 > 5) ∧ (xT2 − yl2 > 5).

4.3.2 Protocol timed automata

We named as protocol timed automata the class of timed automata (Alur
and Dill [6]) that we obtain by the mapping from a timed protocol that we

77

4. Timed protocol modeling

illustrated informally in the previous section. They form a novel class of
timed automata with the following characteristics:

1. they support the empty word ε as a switch label, and

2. clocks are not freely added and reset on switches, they are instead
split into two sets: one associates a unique clock to a unique switch
while the second one associates a clock to every location that is the
source of a ε-labeled switch, and

3. the guards of ε-labeled switches must have at least one equality clause
per possible disjunction (i.e., a clause of the form (x = k) with x being
a clock and k a rational constant or ⊥), and

4. they are deterministic, and

5. the time domain is the set of positive reals R≥0 augmented with the
special symbol ⊥1.

The following definition gives the base of protocol timed automata.
However, any automaton that satisfies this definition does not automati-
cally enforce M-Invoke semantics. The techniques for doing that will be
given later in this section.

Definition 3 (Protocol timed automata). Let T be the time domain defined
as T = R≥0 ∪ {⊥}. A protocol timed automaton A is a timed automaton
A = (L,L0, Lf , X ∪ Y,E,Σ) over T such that |L0| = 1 and the following
conditions hold.

1. For 2 switches e = (l, g, a, r, l′) and e′ = (l, g′, a′, r′, l′′) having the
same source location l, either a = a′, or g ∧ g′ |= false.

2. For every switch e = (l, g, a, r, l′), either:

a) l′ is the source of a ε-labeled switch: r = {xe, yl′} with xe ∈ X
being the clock attached to e and yl′ ∈ Y being the clock attached
to l′, or

1This symbol is used to denoted the fact that a clock is still at its initial value and
has never been reset.

78

From timed protocols to protocol timed automata

b) l′ is not the source of a ε-labeled switch: r = {xe} with xe ∈ X
being the clock attached to e.

It should be noted that the reset set of any switch is composed of 1 or
2 clocks.

3. For every switch e = (l, g, a, r, l′) such that a = ε, g is defined as a
disjunction of conjunctive constraints having each at least one clock
equality clause: g = (x1 = k1 ∧ g′1)∨ · · · ∨ (xn = kn ∧ g′n) with xi being
any clock, ki ∈ Q∪ {⊥} a rational constant or ⊥, n ∈ N and g′i being
any clocks constraint (i ∈ {1, · · · , n}).

4.3.3 Enforcing M-Invoke constraints in protocol
timed automata

We define the M-Invoke semantics so as to enforce that when the guard
of a ε-labeled switch becomes satisfied, it is mandatorily taken. Indeed,
classical timed automata augmented with ε-labeled switches only make the
location change possible when a guard is satisfied, not mandatory.

Definition 4 (M-Invoke semantics). Let A be a protocol timed automaton
and e : l ε,g−→ l′ a ε-labeled switch of A. Let v be the current clocks valuation
such that:

1. the current location is l, and

2. v |= g

In this case, the execution must immediately move to the location l′.

Under M-Invoke semantics, the following behavior needs to be enforced
(examples are taken from Figure 4.6).

1. When a ε-labeled switch guard becomes satisfied, all other switches
must be immediately disabled so as to make it the only switch that
can be taken. An example is when g1 becomes satisfied in l2: the two
other switches must be disabled.

79

4. Timed protocol modeling

2. When a location offering a ε-labeled switch is entered after the equal-
ity clause of its guard has been satisfied, the other switches must not
be disabled. If l2 is entered while xT2 > 5, the other switches must
not be disabled.

3. When the guard of a ε-labeled switch cannot be satisfied when its
equality clause is satisfied, the other switches must not be disabled.
Let us consider g2 while the current location is l2. In case (xT1 = 10)
is satisfied but (xT2 > 2) is not, the two other switches must not be
disabled.

The enforcement is done by rewriting the constraints using two func-
tions. First, we define a function “inhib” over a ε-labeled transition guard
of the form g = (x = k)∧g′. The role of this function is to capture the cases
where g′ is false, thus making the switch that has g as its guard inactive.
As we will see, this function plays a critical role in enforcing the M-Invoke
constraints in protocol timed automata. Then, we will provide a function
“permits”, also defined over a ε-labeled transition guard. It defines when it
allows other switches from the same source location to become actionable.
This function relies on the introduction of clocks that are attached to loca-
tions so as to capture the clocks valuation when locations are entered. It
uses inhib that we introduce in the following definition.

Definition 5 (inhib function). Let a guard g := (x = k) ∧ g′ of a ε-
labeled switch defined over a ε-labeled switch l → l′ such as x is a clock
over T, k is a constant in Q ∪ {⊥} and g′ is any clocks constraint: g′ =
(x1 #1 k1)∧· · ·∧(xj #j kj)∧(xj+1−x′j+1 #j+1 kj+1)∧· · ·∧(xm−x′m #m km)
(for any i ∈ {1, · · · ,m}: xi, x′i ∈ X ∪ Y , ki ∈ Q ∪ {⊥} and #i is any
comparison operator).

We define the function inhib such that: inhib(g) = (x1−x not(#1) k1−
k) ∨ · · · ∨ (xj − x not(#j) kj − k) ∨ (xj+1 − x′j+1 not(#j+1) kj+1) ∨ · · · ∨
(xm − x′m not(#m) km)

In the case where g′ is not defined (i.e., g = (x = k)), then inhib(g) =
false.

80

From timed protocols to protocol timed automata

Going back to the timed automaton of Figure 4.6: inhib(g1) = false
inhib(g2) = (xT2 − xT1 ≤ −8)

Without loss of generality, we chose to reduce the ε-labeled switch guard
g to a unique conjunction in the previous definition to simplify the nota-
tions. The case where g is a disjunction is easy: we consider it as multiple
ε-labeled switches with each switch having a single conjunctive guard. We
keep this assumption in the remainder.

With this inhib function at hand, we can now define a function called
permits. When given the guard of a ε-labeled switch, it defines when the
other switches from the same source location can be enabled without con-
tradicting M-Invoke constraints.

Definition 6 (permits function). Let a guard g := (x = k)∧g′ of a ε-labeled
switch defined over a ε-labeled switch l → l′ such as x is a clock over T,
k is a constant in Q ∪ {⊥} and g′ is any clocks constraint. Let y ∈ Y the
clock that is commonly reset by all the switches whose target location is l.
We define the following clauses:

1. S1 = (x < k)

2. S2 = (x > k) ∧ (x− y > k)

3. S3 = (x > k) ∧ (x− y ≤ k) ∧ inhib(g)

4. S4 = (x = k) ∧ inhib(g)

The function permits(g) is defined as

permits(g) =
∨

i∈{1,2,3,4}
Si

The permits function disjunctive clauses play the following roles. S1

captures the cases where the current clocks valuation v ensures that v(x) is
still below k. S2 captures the cases where v is above k and the location l has

81

4. Timed protocol modeling

been entered after (x = k) was satisfied. This is checked through the clause
(x− y > k). S3 captures the cases where l was entered before (x = k) was
satisfied, but g′i could not be satisfied. In such cases, the switches should
not be disabled for the clocks valuations such that (x > k) is satisfied. Fi-
nally, S4 captures the cases where (x = k) is satisfied but g′i is not, hence
the switches don’t have to be disabled as well.

Again considering the timed automaton of Figure 4.6:

permits(g1) = (xT2 < 5)︸ ︷︷ ︸
S1∨ (xT2 > 5) ∧ (xT2 − yl2 > 5)︸ ︷︷ ︸

S2

permits(g2) = (xT1 < 10)︸ ︷︷ ︸
S1∨ (xT1 > 10) ∧ (xT1 − yl2 > 10)︸ ︷︷ ︸

S2∨ (xT1 > 10) ∧ (xT1 − yl2 ≤ 10) ∧ (xT2 − xT1 ≤ −8)︸ ︷︷ ︸
inhib(g2)︸ ︷︷ ︸

S3∨ (xT1 = 10) ∧ (xT2 − xT1 ≤ −8)︸ ︷︷ ︸
inhib(g2)︸ ︷︷ ︸

S4

We can now define how the guards of the switches whose source locations
offer ε-labeled switches need to be rewritten so as to enforce M-Invoke .

Procedure 1 (M-Invoke enforcement). Let l be a location of a protocol
timed automaton A that offers n > 0 ε-labeled switches:

{eε1 = (l, gε1 , ε, r1, l1), · · · , eεn = (l, gεn , ε, rn, ln)}

The rewriting of the guard of each switch whose source location is l
(including the ε-labeled ones) is performed as follows:

1. for each location l that offers a ε-labeled switch, augment the reset set
of each switch whose target location is l with the clock yl ∈ Y

82

From timed protocols to protocol timed automata

2. compute {permits(gε1), · · · permits(gεn)}

3. rewrite the guard g of each switch (l, g, a, r, l′) as

a) when a 6= ε

g
∧

0≤i≤n
permits(gεi)

b) when a = ε and the switch guard is gεj (j ∈ {1, · · · ,m})

g
∧

0≤i 6=j≤n
permits(gεi)

As an example, we consider again the protocol timed automaton of
Figure 4.6 that has been fixed to enforce M-Invoke semantics on Figure 4.7.

4.3.4 Theoretical results

We now study the expressiveness of protocol timed automata, then prove
that the mapping from timed protocols to timed automata is correct.

Expressiveness

Theorem 1. ε-transitions strictly increase the expressiveness of protocol
timed automata.

Protocol timed automata are strictly more expressive than (general)
timed automata because of their ε-labeled switches. The proof, given on
page 167, is based on the notion of precise actions and is the same as
Corollary 29 of (Beatrice Berard et al. [13]). The idea is that the protocol
timed automaton of Figure 4.8 cannot be expressed equivalently by a timed
automaton without ε-labeled switches.

Correctness of the mapping

We now give some results showing that the guards rewritings above are
correct with respect to the M-Invoke constraint semantics. Indeed, the cor-
rectness of the mapping from timed protocols to protocol timed automata

83

4. Timed protocol modeling

T 0: b
{xT 0}

S0

S2S1

T 1 : a
 xT 1=1∨xT 3=1
{xT 1}

T 2 : b
0xT 11∨0xT 31∨0xT 01
{xT 2 , yS 2}

T 3 :
 xT 1=1∨xT 3=1∨xT 0=1
{xT 3}

Figure 4.8: A protocol timed automaton A that cannot be expressed equiv-
alently without ε-transitions.

relies on the rewriting to correctly enforce M-Invoke constraints semantics.
The following lemma shows that the function inhib works as expected, i.e.,
it can inhibit guards when a ε-labeled switch guard is totally satisfied, and
allow them when it is not. The proof is given on page 168.

Lemma 1. Let a protocol timed automaton A and a location l ∈ A such that
there exists a switch e = (l, g = (x = k) ∧ g′, ε, r, l′), with g′ = (x1 #1 k1) ∧
· · · ∧ (xj #j kj) ∧ (xj+1 − x′j+1 #j+1 kj+1) ∧ · · · ∧ (xm − x′m #m km) for
m ∈ N and j ∈ {1, · · · ,m}. Then:

1. (inhib(g) = true) =⇒ (g′ = false)

2. (inhib(g) = false) =⇒ (g′ = true)

Given a location that has several ε-labeled switches, the following lemma
checks that only one of them can ever become satisfied, thus disabling
and forcing the transition to another location. To do that, we express the

84

From timed protocols to protocol timed automata

following sanity-check type of boolean implication. A proof is given on
page 169.

Lemma 2. Let a protocol timed automaton A and a location l ∈ A such
that it offers n > 0 ε-labeled switches. For any i ∈ {1, · · · , n}, the guard g̃i
of the i-th ε-labeled switch is of the form

gi
∧

1≤i 6=j≤n
permits(gj)

Let i ∈ {1, · · · , n} and j ∈ {1, · · · , n} such that i 6= j. Then:

(gj = true) =⇒ (permits(gj) = false) ∧ (permits(gi) = true)

This implication expresses the fact that when a M-Invoke guard is satis-
fied, then its derived permits constraint is false, and the permits clauses of
every other M-Invoke guards are still true. Indeed, if any of the later per-
mits clauses was to be false, then it would mean that its guard would have
already been actionable in the past, yet not taken and hence not enforced.

The following theorem states that the mapping of a timed protocol to a
protocol timed automaton is correct with respect to M-Invoke constraints.
The proof is given on page 170.

Theorem 2. Let a protocol timed automaton A obtained from a timed pro-
tocol P on which Procedure 1 has been applied. Every ε-labeled switch
e = (l, g = (x = k) ∧ g′, ε, r, l′) of A is taken as soon as its guard g is
satisfied.

Finally, the following lemma states that protocol timed automata are
deterministic. The proof is given on page 85.

Lemma 3. Protocol timed automata are deterministic: given a protocol
timed automaton A and a timed word w ∈ L(A), w has exactly one run
over A.

85

4. Timed protocol modeling

4.4 Discussion

The following discussion aims at first positioning protocol timed automata
with respect to event-clock automata as defined in (Rajeev Alur et al. [119]).
We then discuss two potential limitations in our model. The first is the ab-
sence of support for absolute time constants (e.g., supporting constraints of
the form (x < 2008-05-10:20:00:00)). The second one is the assumption
that we do not take into account network transport delays and losses.

4.4.1 Relationship to event-clock automata

The class of protocol timed automata can be seen as an extension of event-
recording automata (Rajeev Alur et al. [119]). In fact, their design has
been made with them in mind. Yet, any protocol timed automaton is not
necessarily a event-recording automaton. One straightforward similarity
between the two classes is the time domain T = R≥0 ∪ {⊥} and that clocks
are assigned and reset in a restricted fashion. There are however several
differences:

• protocol timed automata support ε-labeled switches with clock resets,
and

• some particular switches may reset two clocks (i.e., the ones whose
target location offers a ε-labeled switch), and

• one subset of the clocks assigns them to switches (i.e., X), not input
symbols, while the complement subset assigns them to locations (Y).

However as we will see in the next chapters, protocol timed automata
are fully deterministic, and they have the property that the value of clocks
only depends of the input words, despite ε-labeled switches (at first sight,
one would think that they necessarily introduce indeterminism).

The class of event-recording automata is however a subset of protocol
timed automata. Indeed, let us consider an event-recording automaton: it
can be translated directly to a protocol timed automaton A as:

86

Discussion

1. there is no ε-labeled switch, and

2. for every input symbol a and any guard clause of the form (xa # k) (#
is any operator and k a constant), it can be rewritten as (xe1 # k) ∨
· · · ∨ (xen # k) where {xe1, · · · , xen} is the set of switches in A where
a is the input symbol.

S0 S3S1

S2

a

b ,xa3

c a

(event-recording)

S0 S3S1

S2

T 1: a
{xT 1=0}

T 2 :b ,xT 13∨xT 43
{xT 2=0}

T 3: c
{xT 3=0}

T 4 : a
{xT 4

=0}

(protocol timed automaton)

Figure 4.9: A sample event-recording automaton viewed as a protocol timed
automaton.

We give an example on Figure 4.9 of a event-recording timed automaton
encoded as a protocol timed automaton.

87

4. Timed protocol modeling

4.4.2 Constraints with absolute dates

Timed protocol constraints are always expressed relatively to a transition
of a given protocol being fired (e.g., C-Invoke(T1 < 3h)). Absolute dates
cannot be used in constraints (e.g., C-Invoke(T1 < ’2007-04-19 14:49:00’)
or C-Invoke(current_time < ’2007-04-19 14:49:00’)). Such types of con-
straints can be found in some specifications such as BPEL (OASIS [102])
where both types of relative and absolute time expressions can be used.

Let us briefly investigate the impact of introducing absolute dates into
the model by looking at the involved mechanisms at the timed automata
level. Allowing a constraint to compare a clock x to a constant date (e.g.,
x < ’2007-04-19 14:49:00’) which represents an absolute date requires the
following assumptions.

1. x is set to a constant now which represents the current date when the
automaton execution starts, and

2. x is always compared to absolute dates, and

3. x is never reset in the considered automaton.

We claim that making such an extension renders the timed language
emptiness checking problem undecidable. The proof can be done by ob-
serving that now is actually a variable. In timed automata, the clocks are
set to a constant value (usually 0) when the execution starts. Here, we
would have some special clocks that would be initially set to a value which
depends on the current time. Hence, the result of checking for the empti-
ness of such an extended timed automaton would only hold considering the
time at which the checking has been performed (i.e., the results holds at
time t but may not hold anymore at time t+ δ with any δ ∈ R≥0).

This limitation of timed protocols in terms of expressiveness is not a
penalty as such constructs are of limited use in practice. In the case of
BPEL, timers are mainly used for generating timeout exceptions in asyn-
chronous operations (e.g., the pick complex activity). They can be also

88

Discussion

used for a wait activity (e.g., put the process in sleep). In our experi-
ence, we have never found a need for expressing absolute dates in BPEL
processes. Also, JBoss JBPM (see http://www.jboss.com/products/jbpm),
a widely used business process management system, offers a workflow lan-
guage called jPDL where time-related constructs are always expressed in
a relative manner (i.e., jPDL does not allow specifying absolute dates for
timers).

4.4.3 Message transport communications

Our model is based on the assumption that there are no message trans-
mission delays and losses. This is of course not the case in reality as web
services messages are mostly transported over unreliable networks that can
have substantial load variations, leading to greatly varying network laten-
cies and even errors. The class of Robust Timed Automata (Rajeev Alur
and P. Madhusudan [118]) is a possible exploration path for solving those
issues. Briefly, a robust timed automaton recognizes timed words with some
fuzziness in the event dates as no real world system can be expected to be
as precise as timed automata expectations. The classical decidability prob-
lems (reachability / emptiness, inclusion) remain unchanged for this class.
However, the expressiveness of such automata cannot be compared to the
one of timed automata (Rajeev Alur and P. Madhusudan [118]). That is
why we guess that using them as a formal framework for timed protocols
probably requires substantial investigations from a theoretical point of view.

89

http://www.jboss.com/products/jbpm

Five

Protocol analysis

Timed protocols can be used to model the external behaviors of web ser-
vices interfaces by capturing the messages choreographies as well as the
timing constraints that are put on them. We focus now on the analysis of
timed protocols given the following two dimensions: compatibility and re-
placeability. To do that, we introduce for each type a set of analysis flexible
classes. By flexible, we mean that those classes cater for more than “black
or white” compatibility or replaceability cases like it has been traditionally
done for hardware and software components. For example one may look
for compatibility or replaceability only for a limited subset of a provider or
requester protocol specification.

This chapter is structured as follows. We first present compatibility
then replaceability analysis before turning our attention to a set of timed
protocol operators that can be combined to characterize those classes. The
approach that is presented here extends the one from (Benatallah et al.
[21]) with timing constraints being added to the business protocol model.

5.1 Classes of protocol-based analysis

We start this chapter by presenting compatibility then replaceability anal-
ysis.

91

5. Protocol analysis

5.1.1 Protocol-level compatibility

Compatibility analysis is concerned with verifying whether two services can
interoperate. It is necessary for both static and dynamic binding, and it
also aids in managing evolution as it helps verify that a modified client can
still interact with a certain service.

More precisely, we identified two compatibility classes.

1. Partial compatibility between two protocols P1 and P2 implies that
at least one conversation can be carried out between two services
implementing these protocols.

2. A protocol P1 is fully compatible with P2 if P2 can support all message
exchanges that P1 can generate (the inverse is not necessarily true).

Ideally, if we have developed a service S characterized by protocol P ,
at binding time we will want to look for services that have a protocol with
which P is fully compatible, so that every message exchange that our ser-
vice can generate is understood by our partner.

We illustrate compatibility analysis with respect to timing constraints
and its challenges on the examples below. Let us consider the protocols
P and P ′ depicted on Figure 5.1. Without the time constraints, we can
observe that P is fully compatible with P ′: a · b · c and a · b · d are valid
interaction traces of the untimed versions of P and P ′. However, due to
the C-Invoke constraints specified on transition T3 of each protocol, P and
P ′ cannot interact correctly. Indeed, P supports timed conversations of the
form (a(−), 0) ·(b(+), t) ·(c(+), t′) (with t′ < t+5), while P ′ supports timed
conversations of the form (a(+), 0) · (b(−), t) · (c(−), t′) (with t′ > t + 10).
Hence, these two protocols cannot interact correctly since P ′ will always
send a message c later than P allows it to be received. Therefore, two pro-
tocols must agree on the ordering of the exchanged messages as well as on

92

Classes of protocol-based analysis

S0

S4

S1 S2 S3 S5

S6

T 1: a− T 2 :b

T 3: c

C−InvokeT 25h

M−InvokeT 2=8h

T 6:

T 5: d

S0' S1' S2'
T 1: a T 2 :b− S4'

S3'T 3 :c −
C−InvokeT 210h

C−InvokeT 2≤10h
T 4 :d −

S0'' S1''
T 1: a T 2 :b −

S2''

P

P '

P ' '

M−InvokeT 4=4h

T 4 :

Figure 5.1: Three protocols for illustrating protocol analysis.

the time constraints to be compatible.

Let us now consider the protocols P and P ′′ on Figure 5.1. When inter-
acting according to the timed interaction trace (a, 0) · (b, t), P moves to a
non-final state s2 while P ′′ moves to a final state s′′2, ending the conversation
from its side. However, due the presence of the implicit transitions T4 and
T5, P is able to terminate correctly its execution by moving automatically
to the final state s4: it waits at state s2 for 8 hours, then moves to s3

where it waits for 4 hours before finally moving to s4 which is a final state.
Therefore, P and P ′′ can interact correctly following the interaction trace
(a, 0) · (b, t).

The last example shows that the implicit transitions have an impact on
the identification of the final states, naturally impacting the compatibility
analysis. We consider again P and P ′ from Figure 5.1. After exchanging

93

5. Protocol analysis

the messages a and b, the two protocols move to the states s2 and s′2 re-
spectively. If we consider the explicit operations that are available from
these two states, s′2 provides an operation d(−) while s2 does not enable
any invocation of a d message receiving operation. As a consequence, fo-
cusing the compatibility checking only on these two states is not enough.
Indeed, the presence of the implicit transition T4 in P moves automatically
a service conversation to the state s3 after 8 hours from when d can be
received. Hence, P and P ′ can interact correctly by following timed inter-
actions traces of the form (a, 0) · (b, t) · (c, t′), with t+ 8 < t′ ≤ t+ 10 (i.e.,
if the message d is sent between 8 and 10 hours after the message b).

5.1.2 Protocol-level replaceability

Replaceability analysis identifies whether a service can acts as a substitute
of another one, either in general or when interacting with certain requesters.
Such an analysis involves finding the set of conversations that both services
can support even if they are not equivalent. This is useful, for example,
to determine whether a new version of a service (protocol) can support the
same conversations as the previous one or whether a newly defined service
can support the conversations that a given standard specification mandates.

As in the case of compatibility, we identified several replaceability classes.

1. Protocol equivalence occurs when two protocols support exactly the
same conversations.

2. Protocol subsumption occurs when a protocol supports at least all of
the conversations of another one.

3. Protocol replaceability w.r.t. a client protocol occurs when a protocol
P1 can replace a protocol P2 when interacting with a client proto-
col Pc if every valid conversation between P2 and Pc is also a valid
conversation between P1 and Pc. This latter definition is helpful in
managing evolution, as when we update our service we may want

94

Protocol operators

to check that it can still communicate with the same clients it was
interacting before.

4. Protocol replaceability w.r.t. an interaction role is similar to the pre-
vious one. It occurs when a protocol P1 can replace a protocol P2 if
P1 behaves like P2 when P2 behaves as an interaction role Pr.

For all of the above classes, we can distinguish between full and partial
replaceability. Full replaceability is as defined above. Partial replaceability
is when there is replaceability but only for some conversations. As an exam-
ple, we have a partial replaceability with respect to a client protocol when
a protocol P1 can replace another protocol P2 in at least one conversation
that can occur with Pc.

To illustrate replaceability, let us consider a protocol P1 obtained from
the protocol P ′′ on Figure 5.1 by reversing the polarities of the messages.
Such a protocol can be replaced by P on Figure 5.1. Indeed, the only timed
conversation supported by P1 are of the form (a(−), 0)·(b(−), t) (with t > 0)
and such conversations are also supported by P . The opposite is however
not true because for example P may support some conversations that con-
tain the messages c or d, while P1 does not. Interestingly, we can observe
that P1 can replace P when interacting with P ′′: the only timed conversa-
tions of P that are understood by P ′′ are of the form (a(−), 0) · (b(−), t)
(with t > 0) and which are also supported by P1.

The next section presents a set of timed protocol operators that can be
used to completely characterize the above compatibility and replaceabilty
classes.

5.2 Protocol operators

We split the set of protocol operators in two categories: manipulation and
comparison operators. The former category allows to compute protocols
capturing properties regarding a pair of protocols, for example to compute

95

5. Protocol analysis

a protocol that captures all of the common timed conversations of two pro-
tocols. The later category allows to compare two protocols for subsumption
(v) and equivalence (≡). We informally describe the protocol manipulation
operators below, while their formal semantics are presented in Table 5.1.

Definition 7 (Timed protocol operators).

Parallel composition (‖TC) takes two input timed protocols and returns
a timed interaction protocol that captures the possible interactions
between them. A timed interaction protocol has simply no messages
polarities. More precisely, the resulting timed interaction protocol de-
scribes the set of timed interaction traces of the input protocols.

Projection is used to project the polarity of one protocol on the parallel
composition of two protocols, and is denoted as [P1 ‖TC P2]P1

.

Intersection (‖TI) takes two input timed protocols and returns one timed
protocol that captures the timed conversations that they have in com-
mon.

Difference (‖TD) takes two input timed protocols and returns one that cap-
tures the timed conversations that are supported by the first input pro-
tocol but not by the second one.

Subsumption (v) tests whether one protocol supports all of the timed
conversations of another protocol (i.e., P v P ′ if and only if Tr(P) ⊆
Tr(P ′)).

Equivalence (≡) checks whether two timed protocols support exactly the
same set of timed conversations (i.e., P ≡ P ′ if and only if Tr(P) =
Tr(P ′).

To illustrate these operators, Figure 5.2 shows three simple timed proto-
cols P1, P2 and P3 as well as some results when applying operators on them.
For example, the protocol P1 ‖TI P3 captures the timed conversations that
are commonly supported by both P1 and P3: P1 does not support receiving
a message c, hence it does not appear in P1 ‖TI P3. Similarly P1 can only

96

Protocol operators

Operator
name

Symbol Semantics

Compatible
Composition

‖TC P = P1 ‖TC P2 is a protocol P such that T ∈ Tr(P) iff
T is an interaction trace of P1 and P2

Intersection ‖TI P = P1 ‖TI P2 is a protocol P such that Tr(P) =
Tr(P1) ∩ Tr(P2)

Difference ‖TD P = P1 ‖TD P2 is a protocol P that satisfies the follow-
ing condition: Tr(P) = Tr(P1) \ Tr(P2)

Projection [‖TC] Let P = P1 ‖TC P2. [P1 ‖TC P2]Pi , with i ∈ {1, 2},
is the protocol obtained from P1 ‖TC P2 by defin-
ing the polarity function of the messages as follows:
Polarity([P1 ‖TC P2]Pi ,m) = Polarity(Pi,m),∀m ∈
M

Table 5.1: Protocol manipulation operators semantics.

s0 s1 s2
T 1: a− T 2 :b−

P2

s0 s1 s2
T 1: a T 2 :b

C−InvokeT 110s

P1 ||
TC P2

s0 s1 s2
T 1: a T 2 :b

C−InvokeT 110s

P1 ||
TI P3

s0 s1 s2
T 1: a− T 2 :b −

C−InvokeT 110s

[P1 ||
TC P 2]P2

s0 s1 s2
T 1: a T 2 :b

P3 ||
TD P1

s3
T 3: c

C−InvokeT 1≥10s

s0 s1 s2
T 1: a T 2 :b

P3

T 3: c
s3

s0 s1 s2
T 2 :b

C−InvokeT 110s

P1
T 1: a

Figure 5.2: Three timed protocols P1,P2 and P3 and some resulting proto-
cols when using protocol manipulation operators.

97

5. Protocol analysis

receive a b message within the 10 seconds that follow the reception of a a
message. Another example is the protocol P3 ‖TD P1 that captures all of
the conversations that P3 supports but that P1 doesn’t support. This is
why the C-Invoke constraint of T2 in P3 ‖TD P1 is the negation of the one
of T2 in P1 as P3 does not carry a C-Invoke constraint on its transition T2.
Similarly, P3 supports receiving c messages while P1 does not. Finally, the
protocol P3 on Figure 5.2 subsumes the protocol P1.

5.3 Characterizing the compatibility and
replaceability classes

Based on the operators introduced above, the following lemma gives the
necessary and sufficient conditions to identify the compatibility level be-
tween two timed protocols.

Lemma 4. Let P1 and P2 be two timed business protocols.

1. P1 and P2 are partially compatible iff P1 ‖TC P2 is not an empty
protocol (i.e., Tr(P1 ‖TC P2) 6= ∅)).

2. P1 and P2 are fully compatible iff [P1 ‖TC P2]P1
≡ P1.

Indeed, if a timed interaction protocol resulting from a compatible com-
position of two input protocols is not empty, it means that there is at least
one timed interaction trace between the input protocols, and hence these
protocols are compatible. Otherwise, the input protocols are not compati-
ble. Regarding the second item of the lemma, the projection [P1 ‖TC P2]P1

describes all the timed conversations of P1 that are also understood by P2.
As a consequence, if such a set of conversations contains all the ones of
P1, it implies that P1 is fully compatible with P2. Otherwise, P1 is not
fully compatible with P2 since there is at least one timed conversation of
P1 which cannot be understood by P2.

The following lemma characterizes the replaceability levels of two given
protocols using the operators introduced in the previous section.

98

Characterizing the compatibility and replaceability classes

Lemma 5. Let P1, P2, PC and PR be three timed business protocols.

1. P1 can replace P2 iff P2 v P1.

2. P1 and P2 are equivalent w.r.t. replaceability iff P1 ≡ P2.

3. P1 can replace P2 w.r.t. a client protocol PC iff [PC ‖TC P2]P2
v P1

(or equivalently iff PC ‖TC (P2 ‖TD P1) is an empty protocol).

4. P1 can replace P2 w.r.t. a role PR iff (PR ‖TI P2) v P1.

The characterization of the subsumption and equivalence w.r.t. replace-
ability is immediate. Regarding the third class of replaceability, the lemma
defines that if all of the timed conversations of a protocol P1 that are also
understood by a protocol PC (given by the projection of P1 on compatible
composition of P1 and PC) are compliant with a protocol P2, then P2 can
replace P1 when interacting with PC . Finally, the last item of the lemma
defines that if the common timed conversations of P2 and PR (given by the
intersection of P2 and PR) are compliant with P1 then P1 can replace P2

when P2 behave as PR.

Class Characterization
Partial compatibility of P1 and P2 P1 ‖TC P2 is not empty
Full compatibility of P1 and P2 [P1 ‖TC P2]P1

≡ P1
Replaceability of P1 by P2 P2 v P1
Equivalence of P1 and P2 w.r.t. replace-
ability

P1 ≡ P2

Replaceability of P2 by P1 w.r.t. a client
protocol PC

[PC ‖TC P2]P2
v P1 or equivalently

PC ‖TC (P2 ‖TD P1) is empty
Replaceability of P2 by P1 w.r.t. a role
PR

(PR ‖TI P2) v P1

Table 5.2: Characterization of the compatibility and replaceability classes.

We have summarized the operators-based characterization of the com-
patibility and replaceability classes in Table 5.2.

99

5. Protocol analysis

T 1: a T 2 : b− T 3 : c

C−Invoke T210

P1

T 1: a − T 2 : b

P2

T 1: a T 2 : b− T 3: c

C−Invoke T2≥10∧T220

P2 ||TD [P1 ||TC P2]
P2

T 1: a T 2 : b− T 3: d

P3

T 4 :
M−Invoke T2=5

T 1: a T 2 : b−

P3 ||TD P4

C−Invoke T25
T 3: d

T 1: a T 2 : b−

P4

T 3 : c −

C−Invoke T220

Figure 5.3: Compatibility and replaceability analysis.

100

Discussion

We give examples of operators-based compatibility and replaceability
analysis on Figure 5.3. P1 and P2 are only partially compatible, as[

P1 ‖TC P2
]
P2
6≡ P2

By using the difference operator to compute P2 ‖TD [P1 ‖TC P2]P2
, we get

the set of conversations that are supported by P2 but not by P1 which
yield to a partial compatibility (P1 does not support receiving a c message
after 10 units of time). P4 can be replaced by P3 as it supports all of the
conversations that P4 supports: P3 v P4. The converse is however not true
as illustrated by P3 ‖TD P4: P3 cannot handle d messages.

5.4 Discussion

We briefly review the related work and discuss the limitations regarding the
message-level matching that is performed in our approach.

5.4.1 Related work

Verification techniques

Many works in various fields have applied verification techniques such as
checking for liveness, the absence of deadlocks or the conformance against
specifications. A substantial amount of work has been done in the field
of workflow systems (Aalst [2]; Bettini et al. [27]; Maria et al. [87]). In
the case of web services, timed automata have been used in (Dyaz et al.
[52]; Kazhamiakin et al. [78]). In (Berardi et al. [25]) the introduced WSTL
model had been designed with timing constraints as “first-class citizen”.
The analysis techniques presented in this paper did not leverage the timing
constraints though, and while this had been mentioned as future work, it
hasn’t yet been done.

BPEL-based web services interactions have been analyzed in (Fu et al.
[62]) by the mean of guarded automata with unbounded message queues
where the automata synchronizablility problem is studied in synchronous

101

5. Protocol analysis

and asynchronous communications. Formal verification of service composi-
tions is the target of several works: (Bultan et al. [40]; Foster et al. [56]; Gu
et al. [66]; Rouached et al. [122]). The same types of verifications can be
performed on protocol timed automata using TCTL, an extension of tem-
poral logics for timed automata, and a model checker such as UPPAAL
(Behrmann et al. [14]).

Compatibility and replaceability

Software components have some fundamental similarities with web services:
they promote good practices such as loose coupling and reuse. Also, they
can be remotely accessed over a network. Similar approaches for protocols
compatibility and replace-ability exist in the area of component-based sys-
tems (Canal et al. [43]; Yellin and Storm [137]).

The importance of being able to check for services compatibility or
replace-ability has lead to several research works (Beyer et al. [28]; Foster
et al. [57]; Mecella et al. [90]). Surprisingly, these approaches do not cater
for timing constraints.

They also perform “black or white” analysis. By contrast, our approach
is able to provide a more fine-grained type of analysis by identifying the
“partial cases” like the partial compatibility or the replace-ability with re-
spect to a client protocol. We believe that this flexibility will significantly
prove to be useful in practice, as full compatibility or replace-ability of
business protocols can hardly be reached on the Internet which is an open
service deployment environment.

The notion of process inheritance has been studied in the domain of
workflows (Bussler [42]; van der Aalst [133]). It is similar to protocols re-
placeability. Different types of inheritance relations are proposed in (van der
Aalst [133]). They provide some flexibility much like we did with the dif-
ferent classes of protocol replaceability. However, these approaches do not

102

Discussion

consider temporal abstractions.

Model management

The work that has been done in the model management area focuses on
manipulating models (e.g., database schemas, XML schemas) and matches
between them (e.g., equivalence between 2 database schema) on an equal
foot (Bernstein et al. [26]). The matches relationships between 2 models
can be used for matching, merging or composition purposes. The models
can also be manipulated through various operators like the intersection, the
union or the difference.

A set of combined static and behavioral matching and merging tech-
niques for statecharts-based specifications have been proposed in (Nejati
et al. [95]). This work has been done in a similar fashion as the approaches
for schema matching (including databases and XML) mentioned in (Bern-
stein et al. [26]; Rahm and Bernstein [116]).

The work presented in this thesis shares some analogies with what has
been done in this research field. Indeed, timed protocol is a model for which
there exist protocol manipulation operators (composition, difference and in-
tersection) as well as comparison operators (subsumption and equivalence).

5.4.2 Message matching

Our approach is mainly “syntactic” in the sense that when considering two
messages named login, we assume that both their schema and semantics
are identical. This is of course not always the case in reality. As far as
the schema is concerned, a better way for comparing two messages in the
protocol operators would be to also look at their definitions (e.g., in XML
Schema, grabbed from the services WSDL specifications). To do that, we
could reuse schema matching algorithms as studied in (Bernstein et al.
[26]; Rahm and Bernstein [116]) or the approach presented in (Dong et al.
[51]) which is more specific to web services interfaces. In some cases an

103

5. Protocol analysis

adapter could be generated at the static interface level (messages schema
and operations).

Another limit of the way that the messages matching is performed is that
2 messages login and logUserIn are considered to be different, although
they could have exactly the same schema and/or semantics (or both could
be “close” enough for easy adaptation). A potential solution would be to
integrate the match operator presented in (Nejati et al. [95]) with our com-
patibility and replaceability analysis techniques as it addresses such type of
issues. The operator uses a heuristic that requires human intervention for
identifying missing and invalid matches. If such an approach turned out
to be useful, the identified message matches and mismatches could then be
exploited to generate protocol adapters (Benatallah et al. [19]; Motahari
et al. [94]).

104

Six

Properties of protocol operators

In the previous chapters, we have both introduced the model of timed pro-
tocols and presented our approach for analyzing the pairwise compatibility
or replaceability of two timed protocol instances. The set of flexible proto-
col compatibility and replaceability analysis classes that we presented can
each be characterized by combining timed protocol operators. Yet, the de-
cidability and closure properties of those operators remain to be studied
(‖TI, ‖TC, ‖TD, v and ≡). To do that, we study those issues on protocol
timed automata by reusing and adapting existing work from the theory of
timed automata. As we will see, the case of ‖TI and ‖TC is easy while the
remaining operators pose more challenges. Indeed, they all rely on the abil-
ity to complement protocol timed automata, which is difficult as they have
ε-labeled switches that cannot be removed in the general case. One strong
theoretical contribution of this work is given here through the closure un-
der complementation of protocol timed automata. This is the first class of
timed automata with ε-labeled switches where this is possible.

This chapter is divided in two sections. The first one works at the pro-
tocol timed automata level and studies the closure of this class under inter-
section, then complementation. The second section leverages the results on
protocol timed automata and translates them to timed protocols, leading
to the decidability and closure properties of the timed protocol operators

105

6. Properties of protocol operators

‖TI, ‖TC, ‖TD, v and ≡.

6.1 Results in protocol timed automata

We first study the intersection of protocol timed automata, then comple-
mentation. For each operator, the structure of the sections is identical:
we give a procedure, an example and a theorem for the closure under the
considered operator.

6.1.1 Intersection of protocol timed automata

The protocol timed automata intersection procedure extends the classical
construction on timed automata (Alur and Dill [6]), which in turns already
extends the construction on (untimed) automata (Hopcroft et al. [74]). We
start by giving the procedure followed by an example. Then, we introduce
a theorem for the closure of protocol timed automata under intersection.

Procedure 2. Given two protocol timed automata A1 = (L1, L
0
1, L
f
1 , X1 ∪

Y1, E1,Σ1) and A2 = (L2, L
0
2, L
f
2 , X2 ∪ Y2, E2,Σ2), the intersection A3 =

A1∩A2 (with A3 = (L3, L
0
3, L
f
3 , X3∪Y3, E3,Σ3)) is built through the following

steps.

1. The locations are L3 = L1 × L2, the initial location is L0
3 = (L0

1, L
0
2)

and the final locations are Lf3 =
{

(l1, l2) | l1 ∈ Lf1 , l2 ∈ Lf2
}
.

2. Two switches e1 = (l1, g1, a1, r1, l
′
1) ∈ A1 and e2 = (l2, g2, a2, r2, l

′
2) ∈

A2 are synchronized if and only if a1 = a2 6= ε, producing a new switch
e1e2 which is added to A3: e1e2 = ((l1, l2), g1 ∧ g2, a1, {xe1e2}, (l′1, l′2))
(this introduces a new clock xe1e2 in A3).

3. ε-labeled switches are first added to A3 with their guard being freed of
permits clauses. We consider their guards to be disjunction-free (i.e.,
a ε-labeled witch whose guard is disjunctive is equivalent to several
ε-labeled switches with conjunctive guards). For each pair of ε-labeled

106

Results in protocol timed automata

switches e1 = (l1, (x1 = k1) ∧ g1, ε, r1, l
′
1) ∈ A1

e2 = (l2, (x2 = k2) ∧ g2, ε, r2, l
′
2) ∈ A2

we add the following switches to E3:
e1eε = ((l1, l2), (x1 = k1) ∧ g1 ∧ ((x2 6= k2) ∨ ¬g2), ε, {xe1eε}, (l′1, l2))
eεe2 = ((l1, l2), (x2 = k2) ∧ g2 ∧ ((x1 6= k1) ∨ ¬g1), ε, {xeεe2}, (l1, l′2))
e1e2 = ((l1, l2), (x1 = k1) ∧ (x2 = k2) ∧ g1 ∧ g2, ε, {xe1e2}, (l′1, l′2))

4. With the set of clocks in A3 being X ∪ Y as per definition, make sure
that for each location l offering at least one ε-labeled switch, a clock
yl ∈ Y is reset on all of the incoming switches to l.

5. For each location l ∈ A3, compute the permits clauses.

6. The guards in A3 need to be rewritten to refer to the clocks of the
switches of A3 as they still refere to those of A1 and A2 at this
step. A map is maintained between each clock xe of A1 or A2 and
the set of clocks {xe,e1, xe,e2, xe3,e, · · · } that correspond to the switches
{(e, e1), (e, e2), · · · , } that were generated from e. Given a guard g of
a switch in A3, a clause (xe # k) of g is rewritten as a disjunction
(xe,e1 # k)∨(xe,e2 # k)∨· · · . Diagonal constraint clauses in g are also
rewritten in a similar fashion using the mappings of its two clocks.

Figure 6.1 gives an example of two protocol timed automata P1 and P2

as well as their intersection P1 ‖TI P2. We deliberately abused notation
for the sake of clarity by referring to transition identifiers in the permits
functions instead of referring to guards.

Please note that in this procedure we remove the existing permits clauses
in the guards as new ones are computed. An extra step when actually im-
plementing this procedure in a programming language would be to prune
the locations that are not reachable from the initial location and the “dead-
lock” locations, i.e., the non-final locations l such that they don’t provide
any outgoing switch. The guards rewriting step is necessary because a

107

6. Properties of protocol operators

S0 S1
T 1: a

T 2 :b , permits T 4

T 3: c , permits T 4
S2

T 4 : ,xT 1=10

S0' S1' S2'

S2

S3'
T 1 ' : a T 2 ' : b T 3 ' : c , permitsT 4 '

T 4 ' : , xT 2 '=10

S0,S0' S1,S1' S1,S2'

S2,S3'

S0,S2'

S1,S0'

T 1T 1 ' : a T 3T 3 ' :c ,
C 4

T 2T 2 ' : b , xT 1T 1 '10

T 4T : ,xT 1T 1 '=10∧ xT 2T 2 '≠10∧C 2

T T 4 ' : , xT 2T 2 '=10∧ xT 1T 1 '≠10∧C3

T ' T 4 ' : , xT 2T 2 '=10

T 4T ' : , xT 1T 1 '=10

T 4T 4 ' : , xT 1T 1 '=10∧xT 2T 2 '=10∧C1

P1

P2

P1 ||TI P2

C1= permits T 4T ∧ permits T T 4
C2= permits T 4T 4 ' ∧ permitsT T 4
C3= permits T 4T 4 ' ∧permits T 4T
C4= permits T 4T 4 ' ∧ permitsT T 4∧ permits T 4T

Figure 6.1: Two protocol timed automata P1 and P2 as well as their inter-
section P1 ‖TI P2.

108

Results in protocol timed automata

switch of one of the input protocol timed automata may yield more than
one switch in the resulting one. An example is the T4 switch on P1 from
Figure 6.1 as it generates T4T

′
4, T4Tε, TεT ′4, T4T

′
ε and T ′εT ′4 in P1 ‖TI P2.

Compared to the classic timed automata intersection procedure, the
protocol timed automata intersection has the following differences.

1. Clocks assignment remains “under control” to match the protocol
timed automata requirement of having at most two clocks reset per
transition. The classical timed automata intersection construction
would simply combine the set of clocks from both input timed au-
tomata and merge the clocks in the reset sets of each switch. For
example on Figure 6.1, T2T

′
2 would reset the clock assigned to T2 and

the one assigned to T ′2.

2. M-Invoke semantics are enforced in the intersection by computing
new permits clauses (the permits clauses of the input timed automata
guards are discarded).

Protocol timed automata are closed under intersection (e.g., A3 = A1 ∩
A2 still belongs to the class).

Theorem 3. The class of protocol timed automata is closed under inter-
section.

The proof of the previous theorem is given on page 172.

6.1.2 Complementation of protocol timed automata

While protocol timed automata intersection is useful for characterizing
timed protocol intersection and parallel composition, the complementation
plays a critical role when it comes to characterizing the protocol difference
and subsumption operators. Moreover, complementation of timed automata
has traditionally been a difficult problem. Indeed, few classes of timed au-
tomata are closed under complementation (Rajeev Alur and P. Madhusudan

109

6. Properties of protocol operators

[118]).

We compute the complement of a protocol timed automaton using the
following procedure which is derived from the one for deterministic timed
automata as given in (Alur and Dill [6]), with the difference lying in the
presence of ε-transitions.

Procedure 3. Given a protocol timed automaton A, we denote by A∗ its
complete automaton which is build as follows.

1. A location q is added to A∗ whose role is to act as a rejection location:
given any timed word w defined over L(A), the execution of w over
A∗ goes to the location q as soon as an input symbol yields to a word
which is not in L(A). Hence, any timed word w defined over the
alphabet of A has a (unique) execution over A∗.

2. For each location l of A (this includes q) and for each word a of the
alphabet, a transition

e =
l,

g ∧
1≤i≤n

permits(gεi)
 , a, {xe}, q

is added where:

a) g is defined as the negation of the disjunctions1 of the guards2 of
the other a-labeled transitions from l, and

b) each gεi = (xi = ki)∧g′εi appears in the guard of the i-th ε-labeled
switch from l, given that l offers n ≥ 0 of such switches.

As in (Alur and Dill [6]), the complement A of A is deduced from A∗ by
inverting the final and the normal locations due to the fact that every timed
word w ∈ L(A) has a unique run over A.

1e.g., given 2 a-labeled switches with guards g1 and g2, g = ¬(g1 ∨ g2)
2For each guard, we do not take into account the clauses that are obtained through

the permits function.

110

Results in protocol timed automata

T 0: b
{xT 0}

S1

T 1 : a
 xT 1=1∨xT 3=1
{xT 1}

T 2 : b
0xT 11∨0xT 31∨0xT 01
{xT 2 , yS 2}

T 3 :
 xT 1=1∨xT 3=1∨xT 0=1
{xT 3}

qqS0

S2

a

a , ga
1 b , gb

1

a , ga
2

b , gb
2

a ,b

Figure 6.2: The complement of the protocol timed automaton of Figure 4.8
(with drawing shortcuts).

As an example, we give on Figure 6.2 the complement of the protocol
timed automaton of Figure 4.8. For the sake of clarity, we took some
shortcuts in the drawing by combining the switches to q that have been
added from the same source location. The added guards are as follows:

• g̃1
a = (xT1 6= 1) ∧ (xT3 6= 1)

• g̃1
b = (xT1 = 0 ∨ xT1 ≥ 1) ∧ (xT3 = 0 ∨ xT3 ≥ 1) ∧ (xT0 = 0 ∨ xT0 ≥ 1)

• g̃2
a = g̃2

b =

((xT1 < 1) ∨ ((xT1 > 1) ∧ (xT1 − yS2 > 1)))∧
((xT3 < 1) ∨ ((xT3 > 1) ∧ (xT3 − yS2 > 1)))∧
((xT0 < 1) ∨ ((xT0 > 1) ∧ (xT0 − yS2 > 1)))

As mentioned in the next theorem (a proof is given on page 173), proto-
col timed automata are closed under complementation. This is a very inter-

111

6. Properties of protocol operators

esting result, not only because it allows us to properly implement a timed
protocol operator such as the difference, but also because the introduction
of ε-labeled switches strictly increases expressiveness over (indeterministic)
timed automata. Interestingly, previous results would not have suggested
that protocol timed automata would be closed under complementation.

Theorem 4. The class of protocol timed automata are closed under com-
plementation.

The proof is given on page 173.

6.2 Results for timed protocol operators

The closure properties of protocol timed automata under intersection and
complementation allows to derive the following theoretical results for timed
protocol operators. The result on the intersection and parallel composition
operators is straightforward.

Corollary 1. Timed protocols are closed under ‖TI, ‖TC and ‖TD.

Both ‖TI and ‖TC operators are based on the intersection using a different
matching of the messages depending on their polarities:

• in the case of ‖TI, two messages match when they have the same name
and polarity (e.g., a(+) and a(+))

• in the case of ‖TC, two messages match when they have the same name
but a different polarity (e.g., a(+) and a(−)).

The result on the difference operator derives from the closure of protocol
timed automata under both intersection and complementation. Indeed,
P1 ‖TD P2 is equivalent to P1 ‖TI P2, hence timed protocol are also closed
under difference.

Corollary 2. The timed protocol comparison operators v and ≡ are decid-
able.

112

Results for timed protocol operators

This comes from the closure under complementation and intersection as
well as from the decidability of the reachability problem (Alur and Dill [6]).
Checking if L(A1) ⊆ L(A2) is equivalent to checking whether L(A1∩A2) = ∅
or not. A technique for checking emptiness of protocol timed automata
using the UPPAAL model checker is discussed in the appendix at page 183.

113

Part III

Applications and perspectives

115

Seven

The ServiceMosaic Protocols project

This chapter presents the implementation of the contributions contained in
this thesis work. We first present ServiceMosaic, the umbrella project in
which this work has been made. We then focus on the components that we
have implemented for modeling and analyzing timed business protocols.

7.1 ServiceMosaic

This section presents the ServiceMosaic project. We first give an outlook
of the general project architecture, then provide some technical details re-
garding how the various projects that compose ServiceMosaic are made.

7.1.1 Project overview

ServiceMosaic1 is an international project for research in the context of web
services. It currently acts as a bridge between several research groups:

• the SOC Group at the University of New South Wales, Sydney, Aus-
tralia

• the APIS Research Group at Université Blaise Pascal, Clermont-
Ferrand, France

1See http://servicemosaic.isima.fr/

117

http://servicemosaic.isima.fr/

7. The ServiceMosaic Protocols project

• the BD-RCR Group at Université Claude Bernard, Lyon, France

• the group of Fabio Casati at the University of Trento, Italy.

Analysis and management interface

Trust negociation protocol editor

Business protocol editor

Composition editor

Mismatch pattern editor

Protocol analysis and
manipulation operators

Code generators from protocol models

Adapter generator

Models representation, storage and manipulation components

Service descriptions
and models

Mismatch patterns
templates Executions logs

Discovery and refinement editor

Adapter generator

Protocol discovery

Development enviroment ServiceMosaic components

Repositories

External interactions through a SOAP interface

Figure 7.1: Architecture overview of the ServiceMosaic platform.

ServiceMosaic is a CASE platform for supporting the service develop-
ment life-cycle that includes facilities for modeling, analyzing, discovering
and adapting web service models (Benatallah et al. [22]; Nezhad et al. [99]).

118

ServiceMosaic

The architecture, depicted on Figure 7.1, comprises the following compo-
nents.

Models and manipulation components support representing, storing
an manipulating service descriptions and protocols. We provide basic
manipulation operations of model elements such as protocols as core
libraries that shield higher-level components from the details of their
physical representations (e.g., plain files, XML, relational databases
and so on).

Analysis and management components include operators for proto-
col compatibility and replaceability analysis (Benatallah et al. [21]),
a code generator that produces BPEL skeletons from protocols (Be-
natallah et al. [18]), a code generator that produces BPEL templates
for implementing the adapters (Benatallah et al. [19]; Nezhad et al.
[97]), and protocol discovery from service execution logs (Nezhad et al.
[98]).

The development environment provides visual exploration for modify-
ing, analyzing and managing model elements. For example, it offers
editors for business protocols, trust negotiation protocols (Skogsrud
et al. [127, 128]) and orchestration models.

Finally, the ServiceMosaic components can be accessed through a set of
programmatic SOAP web service interfaces. Each service is a simple thin
wrapper on top of the components application programming interfaces.

7.1.2 Technical overview

The tools that we develop use the JavaTM platform version 52. Most devel-
opments are being made using the JavaTM programming language, but given
the recent interest in dynamic languages that run on the JavaTM platform
(e.g., Groovy, Ruby, Python, etc), we are allowing their use where useful.
Indeed, the language facilities that are provided by some of those languages

2See http://java.sun.com/j2se/1.5.0/

119

http://java.sun.com/j2se/1.5.0/

7. The ServiceMosaic Protocols project

(e.g., functional programming inspired constructs such as closures3) allow
for writing code that is arguably more concise and easier to read and main-
tain.

For every project, the development approach is the following:

1. develop functionalities as standalone, reusable libraries that can be
used in console, desktop, web or service-based tools, and

2. expose the functionalities in development tools as plug-ins for the
Eclipse platform4.

The choice of Eclipse as a development tools platform is justified by the
following reasons. First of all, it is an open-source platform whose goal is to
explicitly integrate tools from various vendors inside the same environment.
As such, it provides several APIs and frameworks for building applications
that can seamlessly integrate with third-party ones. The benefits for a
research project are numerous.

1. The implementation work can be focused on the sole contribution of
each work, not on less critical details such as providing common dialog
boxes, a preferences support framework, or integrated user assistance.

2. The integration with new developments from inside the ServiceMosaic
project or third-parties is vastly facilitated since a common foundation
is being used. In most cases, the plug-ins that bring the contributions
can simply be assembled inside an Eclipse-based environment without
any modification having to be made.

3. The Eclipse ecosystem is broad with a mixture of open-source and
commercial offerings (see http://www.eclipse.org/membership/exploreMembership.
php). As such, it is a positive factor for facilitating the dissemination
of the work that we conduct.

3Martin Fowler gives a good concise presentation of closures at http://martinfowler.
com/bliki/Closure.html

4See http://www.eclipse.org/

120

http://www.eclipse.org/membership/exploreMembership.php
http://www.eclipse.org/membership/exploreMembership.php
http://martinfowler.com/bliki/Closure.html
http://martinfowler.com/bliki/Closure.html
http://www.eclipse.org/

ServiceMosaic

Figure 7.2: Trac wiki view.

The platform being developed across different institutions around the
world, we have deployed a server at http://servicemosaic.isima.fr/ with col-
laborative services:

• the source code management and versioning is done using Subversion
(see http://subversion.tigris.org/), allowing for distributed, concurrent
modifications and sharing of the source code bases

• each project has an instance of Trac (see http://trac.edgewall.org/), a
web-based application for managing projects that offers a wiki (see
Figure 7.2), a source code browser (integrated with Subversion, see
Figure 7.4), a roadmap (see Figure 7.3) and an issues manager (de-
fects, tasks, enhancements, see Figure 7.5).

• mailing-lists and public / private download areas are available

121

http://servicemosaic.isima.fr/
http://subversion.tigris.org/
http://trac.edgewall.org/

7. The ServiceMosaic Protocols project

Figure 7.3: Trac roadmap view.

• a JavaEE 5 compliant application server5 is available for the deploy-
ment of server-side applications, including web applications and web
services.

A number of projects implemented as part of the ServiceMosaic platform
are set to be progressively released to the public over time.

7.2 Prototype: the ServiceMosaic
Protocols project

The work presented in this thesis has been implemented as part of a subpro-
ject of ServiceMosaic called ServiceMosaic Protocols. It groups the libraries

5In our case, we chose to run Glassfish from Sun Microsystems: http://glassfish.org/.

122

http://glassfish.org/

Prototype: the ServiceMosaic Protocols project

Figure 7.4: Trac source browser view.

and development tools that are related to business protocol modeling, anal-
ysis and management. Figure 7.6 shows a screenshot of the prototype de-
velopment environment which is based on the Eclipse platform. It features
two business protocol being edited, including timing constraints.

7.2.1 Components

The following components have been developed as part of the ServiceMosaic
Protocols project, as depicted on Figure 7.7.

A business protocols model library has been developed. It contains
an object-oriented model for representing and manipulating business
protocols. While abstracting from the physical representation of pro-
tocols (e.g, files, databases, ...), it contains a simple XML persistence

123

7. The ServiceMosaic Protocols project

Figure 7.5: Trac issues management view.

class that allows protocols to be stored and read from various XML
sources (e.g., files, XML databases, network interface, ...). Temporal
constraints are explicitly supported by the library. They are stored
as plain strings in the model that are attached to the transitions of a
protocol. However, a complete object model is part of the library for
manipulating temporal constraints (e.g., programmatically construct-
ing an in-memory constraint, computing the conjunction of two con-
straints, renaming variables, computing the negation of a constraint,
...). We use a parser written using AntLR6 (Parr and Quong [110])
for obtaining the object model that corresponds to a constraint in a
plain string and vice-versa. As such, the protocol model library is
self-contained.

6AntLR is actively developed at http://www.antlr.org/.

124

http://www.antlr.org/

Prototype: the ServiceMosaic Protocols project

Figure 7.6: Screenshot of the ServiceMosaic Protocols prototype.

A protocol manipulation and comparison operators library has been
developed using the Groovy language (Koenig et al. [79]). It imple-
ments the complete range of business protocol operators (i.e., ‖TI, ‖TC,
‖TD, v, ≡). The operators can be used “as-is”, or a facade class can
be used for directly assessing compatibility or replaceability between
two protocols. In fact, the facade class does nothing but invokes the
manipulation and comparison operators as described in Table 5.2.
Emptiness checking is required by some operators. It is done using
the UPPAAL model checker using the technique that is presented
from page 183.

A set of Eclipse plug-ins have been developed, based on the libraries
mentioned above and the Eclipse platform. The business protocol ed-
itor is based on a set of customized SWT/JFace figures (e.g., the shape

125

7. The ServiceMosaic Protocols project

Protocols model library

Operators library

AntLR

UPPAAL Eclipse platform

Graphical Editing Framework

Eclipse plug-ins: editor, analysis, operators, protocol extractor, help

Protocol extraction library

Groovy

Development environment

ServiceMosaic component

Third-party

Legend

Figure 7.7: Architecture of the ServiceMosaic Protocols prototype.

of states in a protocol) and the Eclipse Graphical Editing Framework
(see http://www.eclipse.org/gef/). It can take advantage of WSDL
documents for ensuring that only valid messages are being put into
protocols by designers. The analysis components provide a visual
interface for either invoking the manipulation and comparison opera-
tors, or directly checking for compatibility and replaceabilty of proto-
cols. An embedded help support is available for providing assistance.

The figure also depicts a protocol extraction component. This compan-
ion component having been developed by an engineering intern of the APIS
Research Group7, and since it is still very experimental at this stage, it will
be presented separately in the following section.

To make the libraries easier to use, we adopted the use of fluent inter-
faces (Fowler [60]). Briefly, such “fluent” interfaces tend to use techniques
such as making method calls chainable. This arguably makes the code

7See http://apis.isima.fr/.

126

http://www.eclipse.org/gef/
http://apis.isima.fr/

Prototype: the ServiceMosaic Protocols project

sometimes easier to read, and in many cases, fluent interfaces can be enough
for making an internal domain-specific language (Fowler [59]; Freeman and
Pryce [61]).

The components developed in this project have served as the basis of
many other ServiceMosaic projects. For example, the protocols model li-
brary serves as the standard ServiceMosaic library for developing compo-
nents that manipulate protocols. Also, the protocol editor has been used in
derivative works such as the protocol discovery and refinement tool (Nezhad
et al. [98]).

The ServiceMosaic Protocols project are staged to be released in 2008
under the terms of the GNU Lesser General Public License version 3 8,
a moderate open-source license that facilitates dissemination of the work
while enforcing modifications of the code to be released under the same
licensing conditions.

7.2.2 Protocol extraction

We now outline a protocol extraction operator, developed externally as part
of the ServiceMosaic project, that takes a BPEL process as input and out-
puts a multi-party protocol, which is basically an extension of a timed pro-
tocol where a message is also tagged with the partner link of the service
which is sending or receiving the message. Hence, a multi-party business
protocol captures the global message choreography of a BPEL process.

To extract the multi-party protocol we proceed as follows. First, we
identify protocol extraction patterns for each type of basic and complex
BPEL activity. The extraction starts from the beginning of the process
and goes through each activity to apply the protocol extraction patterns
as such they are recognized. When a complex activity is encountered (e.g.,
if, switch, while, pick, ...), it is recursively processed on each of its complex

8See http://www.gnu.org/licenses/lgpl.html.

127

http://www.gnu.org/licenses/lgpl.html

7. The ServiceMosaic Protocols project

activities until basic activities are reached. Hence, the obtained protocol
fragments are assembled by inverse recursion. For instance, if a if activity
comprises one invoke on each alternative branch, then a protocol fragment
is derived from each invoke, then they are combined as different branches
from the current state in the extraction process.

s0

s1

s2

T1: echo , Caller

T 2 :echo− , Caller

s0

s1

s2

s5

s3 s4

T 1: isServiceAvailable ,
User

T 2 :op2− ,
Partner2

T 3: op3− ,
Partner3

T 4 :addUserInfo ,
User

T 5: op1− ,
Partner1

T 6: , M−InvokeT 0=10h ,
User

T 0

T 7: bip − ,
Beeper

pick

onMessage addUserInfo onMessage isServiceAvailable onAlarm 10h

invoke op1 invoke op2

invoke op3

invoke bip
receive echo

reply echo

sequence

Protocol extraction
operator

Protocol extraction
operator

Figure 7.8: Extraction of multi-party protocols fragments from BPEL.

We give two examples of BPEL patterns extractions on Figure 7.8. The
first example shows a simple sequence activity that consists of a receive
activity followed by a reply. What is done by the sequence is simply the

128

Prototype: the ServiceMosaic Protocols project

echo-ing of a message. This is translated using two transitions (one for each
message). Because a multi-party protocol is extracted, each transition is
also tagged with the partner link (e.g. Caller) and the BPEL activity (e.g.
reply).

The second example shows a pick complex activity involving two mes-
sage handlers and an alarm handler. Each message or alarm handler leads
to a branch for the message choreography that corresponds to its activities.
For example on the addUserInfo message handler, there is a op1 invocation
on the Partner1 partner link. The onAlarm handler leads to an implicit
transition featuring a M-Invoke constraint. Temporal informations can
be extracted from either onAlarm handlers or wait activities. Finally, all
branches join in the state s5 which corresponds to the end of the pick ac-
tivity.

Note that this transformation is not reversible. When generating a pro-
tocol, we only care about possible ordering of messages and not about the
many details prescribed by a BPEL process (such as why – based on which
condition – a certain path is chosen). Nevertheless, we had developed devel-
oped techniques for generating service implementation templates in BPEL
from protocols definitions (Karim Baina et al. [77]).

The protocol which is followed by the process while interacting with a
given service (identified by its BPEL partner link) can be obtained as fol-
lows. The idea is to perform a special form of filtering on the multi-party
protocol. In a similar fashion as projection for timed automata (Rajeev
Alur and P. Madhusudan [118]), we replace the messages with ε on the
transitions that are not associated with the partner link of the service that
we are interested in. Also, each temporal constraint that refers to a tran-
sition which is not from the target partner link is removed. Indeed, they
do not make sense in the protocol that we want to obtain since they re-
fer to events that are not “seen” by the orchestrated service. Finally, the
service protocol is obtained by removing the ε transitions using standard

129

7. The ServiceMosaic Protocols project

techniques on automata (Hopcroft et al. [74]). This is possible only because
if we mapped to timed automata, there would be no guard nor clock resets
on these transitions (Volker Diekert et al. [136]).

In our experiments, we have found out that the protocol extraction
operator works well for a large majority of BPEL processes. As mentioned
previously, this protocol extraction operator is absolutely not part of this
thesis work contributions. It will require further investigations, including
formalization, a proper theoretical study and implementation work.

130

Eight

Protocol analysis at work

We now show how the prototype and protocol analysis approach can be
used to facilitate service development on the following scenario. The scope
of applications of protocol analysis goes however beyond just this example
as we will see in the next chapter. We assume here that a developer is
defining a BPEL process, related to the handling of a purchase order, and
that the process invokes several services during its execution. The tool will
assist the developer in checking if the selected services have a protocol which
is fully or partially compatible with the defined BPEL process, will identify
which conversations can and cannot be carried out, and will also tackle
the case of non compatibility by supporting the development of protocol
adapters.

8.1 BPEL process outline

Consider the BPEL process depicted on Figure 8.1. It orchestrates four web
services to process a purchase order. For the sake of clarity, we have removed
the assign BPEL instructions from the process diagram, normally required
to prepare and reuse the messages exchanged with the involved web services.
The first part of the process handles the payment options. If the customer
asks for a loan, then the process will make an offer using the accounting
web service. The customer can then accept or reject it. The asynchronous

131

8. Protocol analysis at work

receive purchaseOrder

invoke prepareLoanOffer

invoke loanOffer

onMessage accept onMessage reject onAlarm 72h

stop stop

invoke checkAvailability

invoke purchase

onMessage purchaseResponse onAlarm 48h

reply cancelPO

invoke takeGoods

invoke shipGoods

invoke processPayment

reply poProcessed

pick

pick

flow

start

finish

stop

Loan No loan

No Yes

Payment method

Goods availability

Accounting

Customer

Warehouse

Delivery

Figure 8.1: Simplified view of a BPEL process that handles purchase orders.132

Business protocols extraction

pick BPEL construction defines an alarm that will be fired after 72 hours
to discard the process instance if the customer does not reply in time to the
loan offer. The second part checks for the ordered goods availability with
the warehouse web service. If some goods are not available, they will be
ordered. In order to match quality of service requirements, the purchase is
canceled if the warehouse does not manage to purchase the missing goods
within 48 hours. The third an last part of the process handles the payment
and prepares the goods delivery. Finally, the customer is notified that the
purchase has successfully completed.

8.2 Business protocols extraction

Based on this BPEL process definition, we extract the timed protocols that
the process supports when interacting with its partner services. To do this,
we use our multi-party protocol BPEL extractor, and we then obtain the
protocol governing the interaction of the process with each of the partner
services by filtering the multi-party protocol based on each service partner
link. The resulting protocols are shown in Figure 8.2. Figure 8.3 shows
instead the protocol of the warehouse service we are planning to use as one
of the services invoked by our process.

8.3 Protocol analysis

We next apply the protocol analysis operators to assess compatibility be-
tween the protocols supported by our process and the protocols of the ser-
vices we plan to use. For this, we assume that either the protocol or BPEL
definition (from which we extract the protocol) of these services is available.
Figure 8.4) shows the results of this analysis for the warehouse service. In
particular, the compatible composition operator P5 ‖TI P3 gives the set of
the conversations that can occur between protocols P3 and P5. Ideally, we
would want this set to be equal to the conversations supported by P3, which
means that P5 is fully compatible with P3.

133

8. Protocol analysis at work

T1 : shipmentRequest −

T 2 : shipmentResponse

P1 (delivery)

T 1: paymentRequest −

T 2 :
paymentResponse

T 3: loanRequest −

T 4 : loanOffer
T 5:
paymentRequest −

P2 (accounting)

T 1 :
purchaseOrder

T 2 : poProcessed −

T 3: poCancel −

T 4:
loanOffer −

T 5: reject

T 6: accept

T 7 : expiration
M−Invoke T 4=72h

T 8: poProcessed −

P4 (customer)

T 1: availabilityRequest −

T 2 : availabilityResponse

T 3: purchaseRequest −

T 4 : purchaseResponse

C−Invoke T 348h

T 5: takeGoods −

P3 (warehouse)

M−Invoke T3=48h
T 6 : too long

C−Invoke T 472h

C−Invoke T 472h

T 7: takeGoods −

Figure 8.2: Timed protocols extracted from the BPEL process of Figure 8.1.

However, in our example, we do not have such luck. In fact we see that
the conversations supported by the compatible composition are a subset of
those supported by P3. The Figure further shows the conversations that are
supported by the process but not by our partner service P5 (which is empty
in case of full compatibility), as well as the conversations that the partner
supports but that the process does not support. The first of these two com-
bined protocol is obtained by computing the inverse P ′3 of P3 and then the
difference P−1

3 ‖TD P5. The latter is instead computed as P5 ‖TD P−1
3 . As

134

Protocol analysis

T 1: availabilityRequest −

T 2 :
availabilityResponse

T 3: purchaseRequest −

T 4 : purchaseResponse

T 5: takeGoods −

T 6 :
ensureAvailabilityRequest −

T 7:
ensureAvailabilityResponse T 8: purchaseRequest −

T 9: takeGoods −

P5 (warehouse)

T 11: takeGoods −

T 10: takeGoods −

Figure 8.3: The complete warehouse service protocol.

we will examine later, all these combined protocols will become helpful in
examining if and which changes need to be made to the process.

In particular, while the first combined protocol of Figure 8.4 (compati-
ble composition) tells us what we can do, the second one denotes what our
process is prevented from doing when using this partner (hence we call these
prevented interactions), while the third one denotes conversations that the
partner would support, but we are not leveraging due to how we imple-
mented the process. We call these neglected interactions.

It is interesting to note that no compatibility problem would have been
spotted in the case of business protocols without timing constraints (Bena-
tallah et al. [21]). Indeed, the untimed version of P5 would have supported
all of the conversations of the untimed version of P3.

135

8. Protocol analysis at work

T 2 :availabilityResponse

T 3 :
purchaseRequest −

T 4 : purchaseResponse

C−InvokeT 3≥48h

P5 ||TD P3-1 (+ pruning)

T 5: takeGoods −

T 1 : availabilityRequest −

T 1: availabilityRequest − T 2 :availabilityResponse

T 3:
purchaseRequest −

T 6: takeGoods −

[P5 ||TC P3]
P3

T 4 : purchaseResponse

C−Invoke T 348h

T 5: takeGoods −

Figure 8.4: Analysis of the common and differing conversations supported
by P3 and P5.

8.4 Managing partial replaceability
scenarios

By looking at the three combined protocols, the developer can assess if the
selected service is a good fit or not, and how to handle situations of partial
replaceability or of no replaceability. In general, this depends on the specific
business purpose of the process. For example, the service I am planning
to invoke may not support a cancelPO operation, but I may be willing to
take the risk and use it anyways even if cancellations are not allowed, for
example because it offers cheaper rates. Or, conversely, the selected service
supports several forms of payments (accessed via different protocols) but

136

Managing partial replaceability scenarios

my process can only support one of them, and we may be fine with it as
for example our company only issues payments via credit card and not via
bank transfers.

Alternatively, we can modify the process definition to adapt it to the
service we are using, either to:

1. ensure that our process does not generate conversations our partner
cannot understand, or

2. leverage conversations supported by our selected services (e.g., extend
our process to support bank transfers).

As another example, in our process, we can remove the onAlarm 48h
handler of the second pick complex activity, so that the process will wait for
the purchaseResponsemessage to arrive, thereby removing the problematic
temporal constraints in the extracted expected warehouse protocol. How-
ever, the process may find itself being put on hold indefinitely if a problem
occurs on the warehouse service and it does not send a purchaseResponse
message back.

Another solution is to generate a protocol adapter (Benatallah et al.
[19]) to reconcile the differences. It can be done with the ServiceMosaic
tools using an aspect-oriented framework (Kongdenfha et al. [80]) where
adapters are plugged through advices written in BPEL. The adapter is be
developed as follows. The pointcut is triggered when a purchaseRequest
message is received. The advice is a BPEL process where an alarm starts
counting from the reception of the purchaseRequest message. If the ser-
vice does not send a purchaseResponse withing the next 48 hours, then
the adapter drops it when the warehouse service sends it afterwards. The
BPEL engine will have already woken up the process instance by then, and
taken action by replying to the client partner link with a cancelPO message.

Finally, it should be noted that for most BPEL engines, a message
is simply dropped when it cannot be dispatched to any process instance

137

8. Protocol analysis at work

for which it is waiting. An exception is then usually raised and logged
inside the BPEL engine. In this example the adapter would be useful for
diminishing the number of internally-thrown exceptions (raising exceptions
has a significant performance cost). The choice of developing this adapter
should be balanced in light of its development cost compared to the (limited)
benefits, as BPEL engines can provide a form of “implicit” adapter in very
specific mismatches cases such as this one.

138

Nine

Conclusion and perspectives

We conclude this document by summarizing the contributions. We then
provide research and application perspectives beyond this work. Finally,
we recall the publications on which this work is based.

9.1 Summary

This work has revisited, formalized and further extended the concepts pre-
sented in (Benatallah et al. [16, 18, 21]; Karim Baina et al. [77]) by pro-
viding an extended model for web services business protocols that supports
timing abstractions. The level of abstraction that drove the design of this
model was developed on the grounds of a study of real-world scenarios re-
lated to web services. The model can be leveraged for fine-grained protocol
compatibility and replaceability analysis based on a set of protocol manip-
ulation and comparison operators. We showed that the decision problems
surrounding their implementation are decidable, thanks to the mapping and
the identification of a novel class of timed automata which is closed under
complementation and for which the language inclusion problem is decid-
able, all of this despite the major issue of having ε-labeled switches with
clocks resets. Another issue was with the mapping from timed protocols to
timed automata itself, as M-Invoke constraints are not easy to represent
and enforce in timed automata. We also presented our initial prototype as

139

9. Conclusion and perspectives

part of the ServiceMosaic project and gave an application case study.

We believe that modeling and analysis techniques with formal founda-
tions such as the ones that we have presented will help at transforming
the development and the maintenance of web services based applications
from an “art”, requiring a substantial amount of manual interventions, to
a model-driven process that is automated to a large extent.

9.2 Perspectives beyond protocol analysis

The concepts and techniques presented in this thesis focused on both a
model for describing service protocols that includes timing constraints, and
on compatibility / replaceability analysis between two such protocol in-
stances. While already being innovative by themselves, we believe that
those contributions can play a significant role when leveraged in the follow-
ing contexts.

Protocol discovery and querying. It would be interesting to have pro-
tocol repositories as part of service-oriented infrastructures. Such repos-
itories would contain timed protocols for each referenced service. They
could either be based on existing repository infrastructures (e.g., UDDI
and ebXML), or be standalone (e.g., given a service, point to its WSDL and
timed protocol). Users and applications could then leverage them by per-
forming queries based on protocols. Given a protocol, a repository could be
queried for services whose protocols would be compatible (or replaceable).

There are several challenges linked to this type of application. The first
one is to provide a large-scale, efficient physical representation for timed
protocols (e.g., XML files, relational databases or XML databases). The
second one is to provide an efficient indexing technique for retrieval based
on compatibility and replaceability. While the timed protocol operators
allow to assess either compatibility or replaceabilty between two protocols,
it is clearly not advisable to take the input protocol from a query and test
each protocol from the repository.

140

Perspectives beyond protocol analysis

Some exploratory work has begun in the APIS Research Group, Clermont-
Ferrand. The first results show promising outcomes in terms of compatibil-
ity and replaceability based services retrieval.

Web services testing. Providing automated testing at different levels
(e.g., unit-testing or functional testing) is critical in today applications.
This is becoming even more true in the case of service-oriented computing,
as often one has no control on the services it uses. A service may respect a
given protocol today, and an upgrade performed tomorrow may introduce
a small change that breaks some of its clients. Worse, the changes can hap-
pen without any notification having been sent, as a service may not know
all of its requesters. Both the model of timed protocols and compatibil-
ity/replaceability analysis have a significant role to play for improving web
services testing practices. Indeed, protocol-based analysis can be used to
detect incompatible protocol updates, while the model by itself can be used
for generating conversations in the test cases.

Providing the basic infrastructure for running tests is not a big concern
as extending existing tools is relatively easy (e.g., JUnit and TestNG are
common testing frameworks1). The bigger challenges reside in generating
test cases for a given service. Ideally, the set of generated test cases would
provide full test coverage in a minimal number of cases. There are two
research problems here:

1. generating conversations that would each form the skeleton of a test
case, and

2. inject both meaningful and erroneous data in messages.

In terms of conversations generation, one promising technique would be to
start from timed protocols and reuse work on automated tests generation
in timed automata (Nielsen and Skou [100, 101]).

Runtime stateful support. There is today little support in existing
tools and frameworks for stateful web services. In many cases, support

1See http://junit.org/ and http://testng.org/.

141

http://junit.org/
http://testng.org/

9. Conclusion and perspectives

for stateful interactions has to be implemented manually. This means that
developers need to cater with correlation and state management instead of
“just” creating their service interfaces.

We propose to leverage the timed protocols model to facilitate the cre-
ation of stateful web services. The core idea is to keep service interfaces
development simple by taking out such cross-cutting concerns out of the
actual implementation code. The framework would be based on:

1. a correlation component that intercepts messages to correlate them
with service requester instances, and

2. a conversation controller that checks if the intercepted message does
not violate the service protocol, and

3. a dispatcher that forwards messages to the actual service implemen-
tation with correlation and state information having been attached
transparently to the message context.

Timed protocol discovery and adaptation techniques. Existing work
in ServiceMosaic projects tackled the two different problems of protocol dis-
covery and adaptation (Benatallah et al. [19]; Motahari et al. [94]; Nezhad
et al. [98]). The protocol model being used was the untimed one from (Be-
natallah et al. [21]). As such, a natural perspective is to extend it for timed
protocols.

“Agile” composition. Today, developing an application by composing
existing services (e.g., in BPEL) is arguably a very static process. We envi-
sion “agile” frameworks based on some of the components above for facili-
tating the development and the maintenance of service-based compositions.
In this perspective, timed protocols play a critical role (both the model and
compatibility / replaceability analysis). The following frameworks would
be part of this.

• A development framework that would support the development of a
composition using BPEL. It would allow developing the composition

142

Publications

without specifying some or all of the services to be involved. Then, it
would be able to query a protocols repository for compatible services,
meaning that it would allow for rapid prototyping by testing different
combinations of services. Also, the framework would deal with the
assembly details so that developers can almost “drag and drop” ser-
vices in BPEL processes. Finally, it would also assist in developing
adapters when services protocols would not be completely compatible
with the BPEL process. Conversely, it would assist in adapting the
BPEL process itself if the developer does not want to create adapters.

• A runtime framework would assist when changes get necessary. In-
deed, a given service may have to be replaced, either because of un-
availability or simply because the composition developers have a com-
pelling reason to do so. In this regard, we can note that having test
cases and running them periodically could be useful for rapidly spot-
ting composition breakages. The framework would query a repository
for replaceability to find a new service. Again, it would assist in de-
veloping adapters or changing the BPEL process definition so as to
respect business protocols. In particular, such a framework would
make it easier to cope with failures by reducing replacement costs
and delays.

9.3 Publications

Parts and preliminary versions of this work have been published.
We started in (Benatallah et al. [20]; Boualem Benatallah et al. [30])

with a simple extension of business protocols that featured only M-Invoke
constraints. We had introduced protocol operator algorithms tailored for
the model, but it suffered from expressiveness problems. While many
C-Invoke constraints could be encoded using M-Invoke -based construc-
tions, many complex ones could not. Also, the M-Invoke constraints always
referred to the last action, which is a strong limitation by itself. Finally, the
model suffered a states explosion problem when encoding C-Invoke con-

143

9. Conclusion and perspectives

straints using M-Invoke primitives. The timed protocol model presented
here subsumes this initial work.

The model evolved up to a new model presented in (Ponge et al. [113])
which features complex C-Invoke and M-Invoke constraints. It also intro-
duces the reuse of the framework of timed automata for deriving the timed
protocol operator properties. The model presented in this thesis contains
a few tweaks that make it more expressive with respect to the M-Invoke
constraints.

The approach has been presented as part of the larger ServiceMosaic
project in (Benatallah et al. [22]). A demonstration featuring the Service-
Mosaic tools was given in (Nezhad et al. [99]).

International refereed conferences

• Julien Ponge, Farouk Toumani, Boualem Benatallah and Fabio Casati.
Fine-grained Compatibility and Replaceability Analysis of
Timed Web Service Protocols. In the 26th International Confer-
ence on Conceptual Modeling (ER). Auckland, New Zealand. Novem-
ber 2007.

• Boualem Benatallah, Fabio Casati, Julien Ponge and Farouk Toumani.
On Temporal Abstractions of Web Services Protocols. Pro-
ceedings of CAiSE Forum 2005. Porto, Portugal. June 2005.

National refereed conferences

• Boualem Benatallah, Fabio Casati, Julien Ponge, Farouk Toumani.
Compatibility and replaceability analysis for timed web ser-
vice protocols. In BDA 2005. Saint-Malo, France. October 2005.

Refereed journals

• Boualem Benatallah, Fabio Casati, Farouk Toumani, Julien Ponge
and Hamid Reza Motahari Nezhad. Service Mosaic: A Model-
Driven Framework for Web Services Life-Cycle Management.

144

Publications

IEEE Internet Computing, vol. 10, no. 4, pp. 55-63. July/August
2006.

Refereed workshops and demonstrations

• Hamid Motahari, Regis Saint-Paul, Boualem Benatallah, Fabio Casati,
Julien Ponge and Farouk Toumani. ServiceMosaic: Interactive
Analysis and Manipulations of Service Conversations. In In-
ternational Conference on Data Engineering (ICDE’07). Istanbul,
Turkey. April 2007.

• Julien Ponge, A New Model For Web Services Timed Business
Protocols. Atelier “Conception des systemes d’information et ser-
vices Web”- Conférence INFORSID. Hammamet. Tunisia, May 2006.

• Julien Ponge, Modeling and Analysing Web Services Proto-
cols. In IBM PhD Student Symposium at ICSOC 2005. Amsterdam,
The Netherlands, December 2005.

145

Bibliography

[1] Proceedings of the 23rd International Conference on Data Engineer-
ing, ICDE 2007, April 15-20, 2007, The Marmara Hotel, Istanbul,
Turkey, 2007. IEEE.

[2] W.M.P. van der Aalst. The Application of Petri Nets to Workflow
Management. The Journal of Circuits, Systems and Computers, 8(1):
21–66, 1998.

[3] Luca Aceto, no Augusto Burgue and Kim Guldstrand Larsen. Model
checking via reachability testing for timed automata. In TACAS ’98:
Proceedings of the 4th International Conference on Tools and Algo-
rithms for Construction and Analysis of Systems, pages 263–280, Lon-
don, UK, 1998. Springer-Verlag. ISBN 3-540-64356-7.

[4] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services:
Concepts, Architectures, and Applications. Springer Verlag, 2004.

[5] R. Alur, T. Henzinger, and H. Wong-Toi. Symbolic analysis of hybrid
systems. In Proc. 37-th IEEE Conference on Decision and Control,
1997., 1997.

[6] Rajeev Alur and David L. Dill. A theory of timed automata. Theo-
retical Computer Science, 126(2):183–235, 1994.

[7] Rajeev Alur and Thomas A. Henzinger. A really temporal logic. In
FOCS, pages 164–169. IEEE, 1989.

147

Bibliography

[8] Rajeev Alur and Thomas A. Henzinger. A really temporal logic. J.
ACM, 41(1):181–204, 1994.

[9] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking
for real-time systems. In LICS, pages 414–425. IEEE Computer So-
ciety, 1990.

[10] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking
in dense real-time. Inf. Comput., 104(1):2–34, 1993.

[11] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-
Hsin Ho. Hybrid automata: An algorithmic approach to the specifi-
cation and verification of hybrid systems. In Hybrid Systems, pages
209–229, London, UK, 1993. Springer-Verlag. ISBN 3-540-57318-6.

[12] Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits
of relaxing punctuality. J. ACM, 43(1):116–146, 1996.

[13] Beatrice Berard, Volker Diekert, Paul Gastin, and Antoine Petit.
Characterization of the expressive power of silent transitions in timed
automata. Technical report, LIAFA Jussieu, 1999.

[14] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial
on uppaal. In Marco Bernardo and Flavio Corradini, editors, For-
mal Methods for the Design of Real-Time Systems: 4th International
School on Formal Methods for the Design of Computer, Communica-
tion, and Software Systems, SFM-RT 2004, number 3185 in LNCS,
pages 200–236. Springer–Verlag, September 2004.

[15] Boualem Benatallah, Marlon Dumas, and Zakaria Maamar. Defini-
tion and execution of composite web services: The self-serv project.
IEEE Data Eng. Bull., 25(4):47–52, 2002.

[16] Boualem Benatallah, Fabio Casati, Farouk Toumani, and Rachid
Hamadi. Conceptual Modeling of Web Service Conversations. In
Procs of CAiSE’03, volume 2681 of LNCS, pages 449–467, Klagen-
furt, Austria, 2003. Springer.

148

[17] Boualem Benatallah, Quan Z. Sheng, and Marlon Dumas. The self-
serv environment for web services composition. IEEE Internet Com-
puting, 7(1):40–48, 2003.

[18] Boualem Benatallah, Fabio Casati, and Farouk Toumani. Web ser-
vice conversation modeling: A cornerstone for e-business automation.
IEEE Internet Computing, 08(1):46–54, 2004. ISSN 1089-7801. doi:
http://doi.ieeecomputersociety.org/10.1109/MIC.2004.1260703.

[19] Boualem Benatallah, Fabio Casati, Daniela Grigori, Hamid R. Mo-
tahari Nezhad, and Farouk Toumani. Developing adapters for web
services integration. In Oscar Pastor and João Falcão e Cunha, ed-
itors, CAiSE, volume 3520 of Lecture Notes in Computer Science,
pages 415–429. Springer, 2005. ISBN 3-540-26095-1.

[20] Boualem Benatallah, Fabio Casati, Julien Ponge, and Farouk
Toumani. On temporal abstractions of web service protocols. In
Orlando Belo, Johann Eder, João Falcão e Cunha, and Oscar Pas-
tor, editors, CAiSE Short Paper Proceedings, volume 161 of CEUR
Workshop Proceedings. CEUR-WS.org, 2005.

[21] Boualem Benatallah, Fabio Casati, and Farouk Toumani. Represent-
ing, analysing and managing web service protocols. Data Knowl-
edge. Engineering, 58(3):327–357, 2006. ISSN 0169-023X. doi:
http://dx.doi.org/10.1016/j.datak.2005.07.006.

[22] Boualem Benatallah, Fabio Casati, Farouk Toumani, Julien Ponge,
and Hamid Reza Motahari Nezhad. Service mosaic: A model-driven
framework for web services life-cycle management. IEEE Internet
Computing, 10(4):55–63, 2006. ISSN 1089-7801. doi: http://doi.
ieeecomputersociety.org/10.1109/MIC.2006.87.

[23] Johan Bengtsson, W. O. David Griffioen, Kaare J. Kristoffersen,
Kim Guldstrand Larsen, Fredrik Larsson, Paul Pettersson, and Wang
Yi. Verification of an audio protocol with bus collision using up-
paal. In CAV ’96: Proceedings of the 8th International Conference

149

Bibliography

on Computer Aided Verification, pages 244–256, London, UK, 1996.
Springer-Verlag. ISBN 3-540-61474-5.

[24] Béatrice Bérard and Catherine Dufourd. Timed automata and ad-
ditive clock constraints. Information Processing Letters, 75(1-2):1–
7, July 2000. URL http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/
BerDuf-IPL2000.ps.gz.

[25] Daniela Berardi, Fabio De Rosa, Luca De Santis, and Massimo Me-
cella. Finite State Automata as Conceptual Model for e-Services,
2003.

[26] Philip A. Bernstein, Sergey Melnik, Michalis Petropoulos, and
Christoph Quix. Industrial-strength schema matching. SIGMOD
Rec., 33(4):38–43, 2004. ISSN 0163-5808. doi: http://doi.acm.org/
10.1145/1041410.1041417.

[27] Claudio Bettini, X. Sean Wang, and Sushil Jajodia. Temporal
reasoning in workflow systems. Distrib. Parallel Databases, 11(3):
269–306, 2002. ISSN 0926-8782. doi: http://dx.doi.org/10.1023/A:
1014048800604.

[28] Dirk Beyer, Arindam Chakrabarti, and Thomas A. Henzinger. Web
service interfaces. InWWW ’05: Proceedings of the 14th international
conference on World Wide Web, pages 148–159, New York, NY, USA,
2005. ACM Press. ISBN 1-59593-046-9. doi: http://doi.acm.org/10.
1145/1060745.1060770.

[29] Boualem Benatallah, Fabio Casati, and Farouk Toumani. Analysis
and Management of Web Services Protocols. In Proceedings of ER
2004. Shanghai, China, November 2004.

[30] Boualem Benatallah, Fabio Casati, Julien Ponge, and Farouk
Toumani. Compatibility and replaceability analysis for timed web
service protocols. In Proceedings of BDA 2005, Saint-Malo, France,
October 2005.

150

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/BerDuf-IPL2000.ps.gz
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/BerDuf-IPL2000.ps.gz

[31] Patricia Bouyer. Model-cheking timed temporal logics. In Carlos
Areces and Stéphane Demri, editors, Proceedings of the 4th Work-
shop on Methods for Modalities (M4M-5), Electronic Notes in The-
oretical Computer Science, Cachan, France, 2008. Elsevier Science
Publishers. URL http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/
bouyer-M4M5.pdf. To appear.

[32] Patricia Bouyer and François Laroussinie. Vérification par auto-
mates temporisés. In Nicolas Navet, editor, Systèmes temps-réel 1 :
techniques de description et de vérification, pages 121–150. Hermès,
June 2006. URL http://www.lavoisier.fr/fr/livres/index.asp?texte=
2746213030&select=isbn&from=Hermes.

[33] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine
Petit. Updatable timed automata. Theor. Comput. Sci., 321(2-3):
291–345, 2004. ISSN 0304-3975. doi: http://dx.doi.org/10.1016/j.
tcs.2004.04.003.

[34] Patricia Bouyer, Serge Haddad, and Pierre-Alain Reynier. Timed
Petri nets and timed automata: On the discriminating power of
Zeno sequences. In Michele Buglesi, Bart Preneel, Vladimiro Sas-
sone, and Ingo Wegener, editors, Proceedings of the 33rd Inter-
national Colloquium on Automata, Languages and Programming
(ICALP’06) — Part II, volume 4052 of Lecture Notes in Computer
Science, pages 420–431, Venice, Italy, July 2006. Springer. doi:
10.1007/11787006_36. URL http://www.lsv.ens-cachan.fr/Publis/
PAPERS/PDF/BHR-icalp06.pdf.

[35] Patricia Bouyer, Serge Haddad, and Pierre-Alain Reynier. Unde-
cidability results for timed automata with silent transitions. Re-
search Report LSV-07-12, Laboratoire Spécification et Vérification,
ENS Cachan, France, February 2007. URL http://www.lsv.ens-cachan.
fr/Publis/RAPPORTS_LSV/PDF/rr-lsv-2007-12.pdf. 22 pages.

151

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/bouyer-M4M5.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/bouyer-M4M5.pdf
http://www.lavoisier.fr/fr/livres/index.asp?texte=2746213030&select=isbn&from=Hermes
http://www.lavoisier.fr/fr/livres/index.asp?texte=2746213030&select=isbn&from=Hermes
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BHR-icalp06.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BHR-icalp06.pdf
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/rr-lsv-2007-12.pdf
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/rr-lsv-2007-12.pdf

Bibliography

[36] Patricia Bouyer, Nicolas Markey, Joël Ouaknine, and James Worrell.
The cost of punctuality. In LICS, pages 109–120. IEEE Computer
Society, 2007.

[37] Howard Bowman, Giorgio Faconti, Joost-Pieter Katoen, Diego
Latella, and Mieke Massink. Automatic verification of a lip-
synchronisation protocol using uppaal. Formal Aspects of Computing,
10(5-6):550–575, 1998.

[38] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros
Tripakis, and Sergio Yovine. Kronos: A model-checking tool for real-
time systems. In CAV ’98: Proceedings of the 10th International
Conference on Computer Aided Verification, pages 546–550, London,
UK, 1998. Springer-Verlag. ISBN 3-540-64608-6.

[39] Tevfik Bultan. Modeling Interactions of Web Software (invited paper).
In Proceedings of the Second International Workshop on Automated
Specification and Verification of Web Systems (WWV 2006), 2006.

[40] Tevfik Bultan, Xiang Fu, Richard Hull, and Jianwen Su. Conversation
specification: a new approach to design and analysis of e-service com-
position. In WWW 2003, Budapest, Hungary, pages 403–410. ACM,
May 2003.

[41] Tevfik Bultan, Jianwen Su, and Xiang Fu. Analyzing Conversations
of Web Services. IEEE Internet Computing, 10(1):18–25, 2006. ISSN
1089-7801. doi: http://dx.doi.org/10.1109/MIC.2006.1.

[42] Christoph Bussler. Process inheritance. In Proceedings of CAiSE’02,
volume 2348 of Lecture Notes in Computer Science, pages 701–705.
Springer, 2002.

[43] Carlos Canal, Lidia Fuentes, Ernesto Pimentel, Josï¿1
2 M. Troya, and

Antonio Vallecillo. Adding roles to corba objects. IEEE Trans. Softw.
Eng., 29(3):242–260, 2003. ISSN 0098-5589. doi: http://dx.doi.org/
10.1109/TSE.2003.1183935.

152

[44] Sudarshan S. Chawathe, Hector Garcia-Molina, Joachim Hammer,
Kelly Ireland, Yannis Papakonstantinou, Jeffrey D. Ullman, and Jen-
nifer Widom. The tsimmis project: Integration of heterogeneous in-
formation sources. In IPSJ, pages 7–18, 1994.

[45] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Au-
tomatic verification of finite-state concurrent systems using temporal
logic specifications. ACM Trans. Program. Lang. Syst., 8(2):244–263,
1986.

[46] Daniela Berardi. Automatic Composition Services: Models, Tech-
niques and Tools, PhD thesis, 2002.

[47] Pedro R. D’Argenio, Joost-Pieter Katoen, Theo C. Ruys, and Jan
Tretmans. The bounded retransmission protocol must be on time!
In TACAS ’97: Proceedings of the Third International Workshop on
Tools and Algorithms for Construction and Analysis of Systems, pages
416–431, London, UK, 1997. Springer-Verlag. ISBN 3-540-62790-1.

[48] Dave Winer. XML-RPC Specification. http://www.xmlrpc.com/,
1998.

[49] Alexandre David and Wang Yi. Modelling and analysis of a commer-
cial field bus protocol. In Proceedings of the 12th Euromicro Confer-
ence on Real Time Systems, pages 165–172. IEEE Computer Society,
2000. ISBN 0-7695-0734-4.

[50] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool kronos. In
Proceedings of the DIMACS/SYCON workshop on Hybrid systems III
: verification and control, pages 208–219, Secaucus, NJ, USA, 1996.
Springer-Verlag New York, Inc. ISBN 3-540-61155-X.

[51] Xin Dong, Alon Y. Halevy, Jayant Madhavan, Ema Nemes, and Jun
Zhang. Similarity Search for Web Services. In VLDB, pages 372–383,
2004.

153

http://www.xmlrpc.com/

Bibliography

[52] Gregorio Dyaz, M. Emilia Cambronero, Juan J. Pardo, Valentin
Valero, and Fernando Cuartero. Automatic generation of correct
web services choreographies and orchestrations with model check-
ing techniques. In AICT-ICIW ’06: Proceedings of the Advanced
Int’l Conference on Telecommunications and Int’l Conference on In-
ternet and Web Applications and Services, page 186, Washington,
DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2522-9. doi:
http://dx.doi.org/E2A74A0F-588E-4CA4-9E39-169928FAF43A.

[53] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva
Weerawarana. Web Services Description Language (WSDL) – W3C
Note. http://www.w3.org/TR/wsdl, March 2001.

[54] Charles Forgy. Rete: A fast algorithm for the many patterns/many
objects match problem. Artif. Intell., 19(1):17–37, 1982.

[55] Charles Lanny Forgy. On the efficient implementation of production
systems. PhD thesis, Carnegie Mellon University, Pittsburgh, PA,
USA, 1979.

[56] Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer.
Model-based verification of web service compositions. ase, 0:152,
2003. ISSN 1527-1366. doi: http://doi.ieeecomputersociety.org/10.
1109/ASE.2003.1240303.

[57] Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer.
Leveraging eclipse for integrated model-based engineering of web ser-
vice compositions. In eclipse ’05: Proceedings of the 2005 OOP-
SLA workshop on Eclipse technology eXchange, pages 95–99, New
York, NY, USA, 2005. ACM Press. ISBN 1-58113-000-0. doi:
http://doi.acm.org/10.1145/1117696.1117716.

[58] Martin Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2002. ISBN 0321127420.

154

http://www.w3.org/TR/wsdl

[59] Martin Fowler. Domain specific language. http://martinfowler.com/
bliki/DomainSpecificLanguage.html, February 2004.

[60] Martin Fowler. Fluent interface. http://martinfowler.com/bliki/
FluentInterface.html, December 2005.

[61] Steve Freeman and Nat Pryce. Evolving an embedded domain-specific
language in java. In Peri L. Tarr and William R. Cook, editors,
OOPSLA Companion, pages 855–865. ACM, 2006. ISBN 1-59593-
491-X.

[62] Xiang Fu, Tevfik Bultan, and Jianwen Su. Analysis of interacting
bpel web services. InWWW ’04: Proceedings of the 13th international
conference on World Wide Web, pages 621–630, New York, NY, USA,
2004. ACM Press. ISBN 1-58113-844-X. doi: http://doi.acm.org/10.
1145/988672.988756.

[63] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign patterns: elements of reusable object-oriented software. Addison-
Wesley Professional, 1995.

[64] Claude Girault and Rudiger Valk. Petri Nets for System Engineering:
A Guide to Modeling, Verification, and Applications. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2001. ISBN 3540412174.

[65] François Goasdoué, Véronique Lattès, and Marie-Christine Rousset.
The use of carin language and algorithms for information integration:
The picsel system. Int. J. Cooperative Inf. Syst., 9(4):383–401, 2000.

[66] Zhifeng Gu, Juanzi Li, Jie Tang, Bin Xu, and Ruobo Huang. Veri-
fication of web service conversations specified in wscl. Compsac, 2:
432–437, 2007. ISSN 0730-3157. doi: http://doi.ieeecomputersociety.
org/10.1109/COMPSAC.2007.235.

[67] Alon Y. Halevy, Zachary G. Ives, Jayant Madhavan, Peter Mork, Dan
Suciu, and Igor Tatarinov. The piazza peer data management system.
IEEE Trans. Knowl. Data Eng., 16(7):787–798, 2004.

155

http://martinfowler.com/bliki/DomainSpecificLanguage.html
http://martinfowler.com/bliki/DomainSpecificLanguage.html
http://martinfowler.com/bliki/FluentInterface.html
http://martinfowler.com/bliki/FluentInterface.html

Bibliography

[68] K. Havelund, A. Skou, K. G. Larsen, and K. Lund. Formal mod-
eling and analysis of an audio/video protocol: an industrial case
study using uppaal. In RTSS ’97: Proceedings of the 18th IEEE
Real-Time Systems Symposium (RTSS ’97), page 2, Washington, DC,
USA, 1997. IEEE Computer Society. ISBN 0-8186-8268-X.

[69] Klaus Havelund, Kim Guldstrand Larsen, and Arne Skou. Formal
verification of a power controller using the real-time model checker
uppaal. In ARTS ’99: Proceedings of the 5th International AMAST
Workshop on Formal Methods for Real-Time and Probabilistic Sys-
tems, pages 277–298, London, UK, 1999. Springer-Verlag. ISBN 3-
540-66010-0.

[70] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. Temporal
proof methodologies for timed transition systems. Inf. Comput., 112
(2):273–337, 1994.

[71] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio
Yovine. Symbolic model checking for real-time systems. Inf. Comput.,
111(2):193–244, 1994. ISSN 0890-5401. doi: http://dx.doi.org/10.
1006/inco.1994.1045.

[72] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. Hytech:
A model checker for hybrid systems. In CAV ’97: Proceedings of the
9th International Conference on Computer Aided Verification, pages
460–463, London, UK, 1997. Springer-Verlag. ISBN 3-540-63166-6.

[73] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003. ISBN
0321200683.

[74] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Intro-
duction to Automata Theory, Languages, and Computation (2nd Edi-
tion). Addison Wesley, November 2000. ISBN 0201441241. URL
http://www.amazon.fr/exec/obidos/ASIN/0201441241/citeulike04-21.

156

http://www.amazon.fr/exec/obidos/ASIN/0201441241/citeulike04-21

[75] Joel Ouaknine and James Worrell. On the Language Inclusion Prob-
lem for Timed Automata: Closing a Decidability Gap. In Proceedings
of LICS 04. IEEE Computer Society Press, 2004.

[76] Zuling Kang, Hongbing Wang, and Patrick C. K. Hung. Ws-cdl+:
An extended ws-cdl execution engine for web service collaboration.
In ICWS, pages 928–935. IEEE Computer Society, 2007.

[77] Karim Baina, Boualem Benatallah, Fabio Casati, and Farouk
Toumani. Model-Driven Web Service Development. Proceedings of
CAiSE 2004, Riga, Latvia, June 2004.

[78] Raman Kazhamiakin, Paritosh K. Pandya, and Marco Pistore. Timed
modelling and analysis in web service compositions. In ARES, pages
840–846. IEEE Computer Society, 2006.

[79] Dierk Koenig, Andrew Glover, Paul King, Guillaume Laforge, and
Jon Skeet. Groovy in Action. Manning Publications Co., Greenwich,
CT, USA, 2007. ISBN 1932394842.

[80] Woralak Kongdenfha, Régis Saint-Paul, Boualem Benatallah, and
Fabio Casati. An aspect-oriented framework for service adaptation.
In Asit Dan and Winfried Lamersdorf, editors, ICSOC, volume 4294
of Lecture Notes in Computer Science, pages 15–26. Springer, 2006.
ISBN 3-540-68147-7.

[81] Ron Koymans. Specifying real-time properties with metric temporal
logic. Real-Time Systems, 2(4):255–299, 1990.

[82] Maurizio Lenzerini. Data integration: A theoretical perspective. In
Lucian Popa, editor, PODS, pages 233–246. ACM, 2002.

[83] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. The world
wide web as a collection of views: Query processing in the information
manifold. In VIEWS, pages 43–55, 1996.

[84] Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal Design and
Analysis of a Gear-Box Controller. In Proc. of the 4th Workshop on

157

Bibliography

Tools and Algorithms for the Construction and Analysis of Systems,
number 1384 in Lecture Notes in Computer Science, pages 281–297.
Springer–Verlag, March 1998.

[85] Henrik Lönn and Paul Pettersson. Formal Verification of a TDMA
Protocol Startup Mechanism. In Proc. of the Pacific Rim Int. Symp.
on Fault-Tolerant Systems, pages 235–242, December 1997.

[86] Nancy A. Lynch and Hagit Attiya. Using mappings to prove timing
properties. Distributed Computing, 6(2):121–139, 1992.

[87] Elisabetta De Maria, Angelo Montanari, and Marco Zantoni. An
automaton-based approach to the verification of timed workflow
schemas. In TIME ’06: Proceedings of the Thirteenth International
Symposium on Temporal Representation and Reasoning (TIME’06),
pages 87–94, Washington, DC, USA, 2006. IEEE Computer Society.
ISBN 0-7695-2617-9. doi: http://dx.doi.org/10.1109/TIME.2006.6.

[88] Maria Sorea. Tempo: A Model Checker for Event-Recording Au-
tomata. Technical report, SRI International, 7 November 2001.

[89] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques
Moreau, and Henrik Frystyk Nielsen. SOAP Version 1.2 Part 1: Mes-
saging Framework. W3C Recommendation, http://www.w3.org/TR/
soap12-part1/, June 2003.

[90] Massimo Mecella, Barbara Pernici, and Paolo Craca. Compatibility of
e -services in a cooperative multi-platform environment. In TES ’01:
Proceedings of the Second International Workshop on Technologies for
E-Services, pages 44–57, London, UK, 2001. Springer-Verlag. ISBN
3-540-42565-9.

[91] Philip Meir Merlin. A study of the recoverability of computing systems.
PhD thesis, University of California, Irvine, 1974.

[92] Michael Merritt, Francesmary Modugno, and Marc R. Tuttle. Time-
constrained automata (extended abstract). In Jos C. M. Baeten and

158

http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/

Jan Friso Groote, editors, CONCUR, volume 527 of Lecture Notes in
Computer Science, pages 408–423. Springer, 1991. ISBN 3-540-54430-
5.

[93] Joseph S. Miller. Decidability and complexity results for timed au-
tomata and semi-linear hybrid automata. In Nancy A. Lynch and
Bruce H. Krogh, editors, HSCC, volume 1790 of Lecture Notes in
Computer Science, pages 296–309. Springer, 2000. ISBN 3-540-67259-
1.

[94] Hamid Motahari, Boualem Benatallah, Axel Martens, Francisco
Curbera, and Fabio Casati. Semi-automated adaptation of service in-
teractions. To appear in proceedings of the 16th International World
Wide Web Conference (WWW2007), Alberta, Canada, May 2007.

[95] Shiva Nejati, Mehrdad Sabetzadeh, Steve Easterbrook, and Pamela
Zave. Matching and merging of statecharts specifications. To appear
in the proceedings of ICSE’07, May 2007.

[96] Hamid R. Motahari Nezhad, Boualem Benatallah, Fabio Casati,
and Farouk Toumani. Web services interoperability specifications.
Computer, 39(5):24–32, 2006. ISSN 0018-9162. doi: http://doi.
ieeecomputersociety.org/10.1109/MC.2006.181.

[97] Hamid R. Motahari Nezhad, Boualem Benatallah, Axel Martens,
Francisco Curbera, and Fabio Casati. Semi-automated adaptation
of service interactions. In Carey L. Williamson, Mary Ellen Zurko,
Peter F. Patel-Schneider, and Prashant J. Shenoy, editors, WWW,
pages 993–1002. ACM, 2007. ISBN 978-1-59593-654-7.

[98] Hamid R. Motahari Nezhad, Régis Saint-Paul, Boualem Benatallah,
and Fabio Casati. Protocol discovery from imperfect service interac-
tion logs. In ICDE DBL [1], pages 1405–1409.

[99] Hamid R. Motahari Nezhad, Régis Saint-Paul, Boualem Benatallah,
Fabio Casati, Julien Ponge, and Farouk Toumani. Servicemosaic:

159

Bibliography

Interactive analysis and manipulation of service conversations. In
ICDE DBL [1], pages 1497–1498.

[100] Brian Nielsen and Arne Skou. Automated test generation from timed
automata. In Tiziana Margaria and Wang Yi, editors, TACAS, vol-
ume 2031 of Lecture Notes in Computer Science, pages 343–357.
Springer, 2001. ISBN 3-540-41865-2.

[101] Brian Nielsen and Arne Skou. Automated test generation from timed
automata. STTT, 5(1):59–77, 2003.

[102] OASIS. Web Services Business Process Execution Language Version
2.0. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html, April
2007.

[103] Object Management Group Inc. (OMG). Omg unified modeling lan-
guage (omg uml), infrastructure, v2.1.2. http://www.omg.org/spec/
UML/2.1.2/Infrastructure/PDF/, November 2007.

[104] Joël Ouaknine and James Worrell. On the decidability and complexity
of metric temporal logic over finite words. CoRR, abs/cs/0702120,
2007.

[105] Joël Ouaknine and James Worrell. On the decidability of metric tem-
poral logic. In LICS, pages 188–197. IEEE Computer Society, 2005.
ISBN 0-7695-2266-1.

[106] Joël Ouaknine and James Worrell. On metric temporal logic and
faulty turing machines. In Luca Aceto and Anna Ingólfsdóttir, editors,
FoSSaCS, volume 3921 of Lecture Notes in Computer Science, pages
217–230. Springer, 2006. ISBN 3-540-33045-3.

[107] M. P. Papazoglou and D. Georgakopoulos. Special issue on service
oriented computing. Commun. ACM, 46(10):24–28, 2003. ISSN 0001-
0782. doi: http://doi.acm.org/10.1145/944217.944233.

[108] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and
Frank Leymann. Service-oriented computing: State of the art and

160

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/

research challenges. Computer, 40(11):38–45, 2007. ISSN 0018-9162.
doi: http://doi.ieeecomputersociety.org/10.1109/MC.2007.400.

[109] Mike P. Papazoglou and Willem-Jan van den Heuvel. Service oriented
architectures: approaches, technologies and research issues. VLDB
Journal, 16(3):389–415, 2007.

[110] Terence John Parr and Russell W. Quong. Antlr: A predicated- LL(k)
parser generator. Softw., Pract. Exper., 25(7):789–810, 1995.

[111] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57.
IEEE, 1977.

[112] Amir Pnueli and Eyal Harel. Applications of temporal logic to
the specification of real-time systems. In Mathai Joseph, editor,
FTRTFT, volume 331 of Lecture Notes in Computer Science, pages
84–98. Springer, 1988. ISBN 3-540-50302-1.

[113] Julien Ponge, Boualem Benatallah, Fabio Casati, and Farouk
Toumani. Fine-grained compatibility and replaceability analysis of
timed web service protocols. In Christine Parent, Klaus-Dieter
Schewe, Veda C. Storey, and Bernhard Thalheim, editors, ER, volume
4801 of Lecture Notes in Computer Science, pages 599–614. Springer,
2007. ISBN 978-3-540-75562-3.

[114] Zongyan Qiu, Xiangpeng Zhao, Chao Cai, and Hongli Yang. To-
wards the Theoretical Foundation of Choreography. To appear in
WWW2007, May 2007.

[115] R. Alur, C. Courcoubetis, and T.A. Henzinger. The observational
power of clocks. In Proceedings of the Fifth Conference on Concur-
rency Theory, number 836 in LNCS, pages 162–177, 1994.

[116] Erhard Rahm and Philip A. Bernstein. A survey of approaches to au-
tomatic schema matching. The VLDB Journal, 10(4):334–350, 2001.
ISSN 1066-8888. doi: http://dx.doi.org/10.1007/s007780100057.

161

Bibliography

[117] Rajeev Alur. Timed Automata. NATO-ASI 1998 Summer School on
Verification of Digital and Hybrid Systems, 1998.

[118] Rajeev Alur and P. Madhusudan. Decision problems for timed au-
tomata: A survey. In 4th Intl. School on Formal Methods for Com-
puter, Communication, and Software Systems: Real Time, 2004.

[119] Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-clock au-
tomata: A determinizable class of timed automata. In Proceedings of
the Sixth Conference on Computer-Aided Verification, number 818 in
LNCS, 1994.

[120] C. Ramchandani. Analysis of Asynchronous Concurrent Systems by
Timed Petri Nets. Cambridge, Mass.: MIT, Dept. Electrical Engi-
neering, PhD Thesis, 1974.

[121] RosettaNet. RosettaNet PIP Directory. http://www.rosettanet.org/,
1996 – 2008.

[122] Mohsen Rouached, Olivier Perrin, and Claude Godart. Towards for-
mal verification of web service composition. In Schahram Dustdar,
José Luiz Fiadeiro, and Amit P. Sheth, editors, Business Process Man-
agement, volume 4102 of Lecture Notes in Computer Science, pages
257–273. Springer, 2006. ISBN 3-540-38901-6.

[123] Roy Thomas Fielding. Architectural Styles and the Design of Network-
based Software Architectures. PhD thesis, University of California,
Irvine, 2000.

[124] S. Vinoski. WWS-Nonexistent Standards. IEEE Internet Computing,
8(6):94–96, 2004.

[125] Quan Z. Sheng, Boualem Benatallah, Marlon Dumas, and Eileen Oi-
Yan Mak. Self-serv: A platform for rapid composition of web services
in a peer-to-peer environment. In VLDB, pages 1051–1054. Morgan
Kaufmann, 2002.

162

http://www.rosettanet.org/

[126] Dale Skeen and Michael Stonebraker. A formal model of crash re-
covery in a distributed system. IEEE Trans. Software Eng., 9(3):
219–228, 1983.

[127] Halvard Skogsrud, Boualem Benatallah, and Fabio Casati. Model-
driven trust negotiation for web services. IEEE Internet Computing,
7(6):45–52, 2003.

[128] Halvard Skogsrud, Boualem Benatallah, Fabio Casati, and Manh Q.
Dinh. Trust-serv: A lightweight trust negotiation service. In Mario A.
Nascimento, M. Tamer Özsu, Donald Kossmann, Renée J. Miller,
José A. Blakeley, and K. Bernhard Schiefer, editors, VLDB, pages
1329–1332. Morgan Kaufmann, 2004. ISBN 0-12-088469-0.

[129] Stavros Tripakis. Folk theorems on the determinization and mini-
mization of timed automata. In FORMATS, pages 182–188. Springer,
2003.

[130] Ferucio Laurentiu Tiplea and Geanina Ionela Macovei. E-timed
workflow nets. synasc, 0:423–429, 2006. doi: http://doi.
ieeecomputersociety.org/10.1109/SYNASC.2006.33.

[131] Michele Trainotti, Marco Pistore, Gaetano Calabrese, Gabriele Zacco,
Gigi Lucchese, Fabio Barbon, Piergiorgio Bertoli, and Paolo Traverso.
Astro: Supporting composition and execution of web services. In
Boualem Benatallah, Fabio Casati, and Paolo Traverso, editors, IC-
SOC, volume 3826 of Lecture Notes in Computer Science, pages 495–
501. Springer, 2005. ISBN 3-540-30817-2.

[132] Jeffrey D. Ullman. Information integration using logical views. Theor.
Comput. Sci., 239(2):189–210, 2000.

[133] W. van der Aalst. Inheritance of business processes: A journey visiting
four notorious problems, 2003.

[134] Wil M. P. van der Aalst and Arthur H. M. ter Hofstede. Yawl: yet
another workflow language. Inf. Syst., 30(4):245–275, 2005.

163

Bibliography

[135] Wil M. P. van der Aalst, Lachlan Aldred, Marlon Dumas, and Arthur
H. M. ter Hofstede. Design and implementation of the yawl system.
In Anne Persson and Janis Stirna, editors, CAiSE, volume 3084 of
Lecture Notes in Computer Science, pages 142–159. Springer, 2004.
ISBN 3-540-22151-4.

[136] Volker Diekert, Paul Gastin, and Antoine Petit. Removing ε-
transitions in timed automata. In STACS’97, volume 1200 of Lec-
ture Notes in Computer Science, pages 583–594, Lübeck, Germany,
February 1997. Springer. URL http://www.lsv.ens-cachan.fr/Publis/
PAPERS/PS/DGP-stacs97.ps.

[137] D.M. Yellin and R.E. Storm. Protocol Specifications and Component
Adaptors. ACM Trans. Program. Lang. Syst., 19(2):292–333, March
1997.

164

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/DGP-stacs97.ps
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/DGP-stacs97.ps

Part IV

Appendix

165

One

Proofs

A.1 Proof of Theorem 1

Proof. We need to show that ε-transitions in protocol timed automata can-
not always be removed, i.e., there are protocol timed automata for which
there doesn’t exist equivalent automata without ε-transitions. To do that,
we exhibit the protocol timed automaton A depicted on Figure 4.8 and
use the notions of precise time and precise actions that were introduced
in the Theorem 24 of (Beatrice Berard et al. [13]) as a tool to identify
timed languages that can only be recognized by timed automata featuring
ε-transitions. The proof is virtually the same as the one of Corollary 29 in
(Beatrice Berard et al. [13]).

It is easy to check that A is a protocol timed automaton. A presents
2 ε-transitions lying on directed cycles, hence we don’t know if they can
be removed using the techniques presented in Section 8 in (Beatrice Berard
et al. [13]).

Let us now suppose that L(A) can be recognized by a timed automaton
A′ without any ε-transition. Note that A′ is free of diagonal constraints
(e.g., constraints of the form x−y # c). A′ can be rendered disjunction-free
without any loss of generality (see (Beatrice Berard et al. [13]) for techniques
and discussion). In order to leverage the Theorem 24 of (Beatrice Berard
et al. [13]), we define Cmax = 1 (no constant in the guards of A is larger

167

A. Proofs

than 1). Let also δ > 0. A can recognize timed words of the form

(b, δ1) · (b, δ2) · · · (b, δd−1) · (a, d) · (a, d+ 1) · · ·

where d ∈ N, d ≥ Cmax and δi ∈ (i − 1, i) \ δN for all 0 < i < d. Let
P a path of A′ that accepts such a timed word. Given that the a-labeled
events occur at integer times, their occurrences should be precise in P . Also,
d ≥ Cmax, hence from Theorem 24 of (Beatrice Berard et al. [13]), there
exist some occurrence of b that should be precise in P which is not possible
as δi 6∈ δN for any 0 < i < d. Consequently, L(A) cannot be recognized by
a timed automaton without ε-transitions.

A.2 Proof of Lemma 1

Proof. inhib(g) = (x1− x not(#1) k1− k)∨ · · · ∨ (xj − x not(#j) kj − k)∨
(xj+1 − x′j+1 not(#j+1) kj+1) ∨ · · · ∨ (xm − x′m not(#m) km)

For every i ∈ {1, · · · , j}, note that (xi− x not(#i) ki− k) continuously
evaluates to either true or false while the current location is l. Also, note
that when (x = k) is satisfied,

(xi − x not(#i) ki − k) = (xi not(#i) ki)

which is the exact negation of the clause (xi #i ki) ∈ g′.
For every i ∈ {j + 1, · · · ,m}, (xi− x′i not(#i) ki) is the negation of the

clause (xi − x′i #i ki) ∈ g′.
Consequently, when any clause of g′ is false, inhib(g) = true and,

conversely, when every clause of g′ is true then inhib(g) = false.

A.3 Proof of Lemma 2

Proof. Let us check the implication.

(gj = false)
∨

(permits(gj) = false) ∧ (permits(gi) = true) = true

is equivalent to

(permits(gj) = true)
∨

(permits(gj) = false)∧(permits(gi) = true) = true

168

Proof of Theorem 2

which reduces to

(permits(gj) = true)︸ ︷︷ ︸
false as gj=true

∨
(permits(gi) = true) = true︸ ︷︷ ︸

permits(gi)=true

and the implication is verified. Indeed, permits(gi) = true, else this would
mean that the switch whose guard is g̃i had already been activated.

A.4 Proof of Theorem 2

Proof. Let us compute the cases where inhib(g) evaluates to false. We
assume that y ∈ Y is the clock that is reset on every switch whose target
location is l. We compute and expand the negation:

¬ permits(g) = (x > k)

∧ ((x ≤ k) ∨ (x− y ≤ k))

∧ ((x ≤ k) ∨ (x− y > k) ∨ ¬ inhib(g))

∧ ((x 6= k) ∨ ¬ inhib(g))

we make a first development:

= ((x = k) ∨ (x ≥ k) ∧ (x− y ≤ k))

∧ ((x < k) ∨ (x 6= k) ∧ (x− y > k)

∨ (x 6= k) ∧ ¬ inhib(g)

∨ (x ≤ k) ∧ ¬ inhib(g)

∨ (x− y > k) ∧ ¬ inhib(g)

∨ ¬ inhib(g))

and a second one:

= (x = k) ∧ ¬ inhib(g)

∨ (x = k) ∧ (x− y > k) ∧ ¬ inhib(g) false

∨ (x > k) ∧ (x− y ≤ k) ∧ ¬ inhib(g)

∨ (x = k) ∧ (x− y ≤ k) ∧ ¬ inhib(g)

∨ (x ≥ k) ∧ (x− y ≤ k) ∧ ¬ inhib(g)

169

A. Proofs

by reducing the last 3 disjunctions:

¬ permits(g) = (x = k) ∧ ¬ inhib(g)

∨ (x ≥ k) ∧ (x− y ≤ k) ∧ ¬ inhib(g)

= (x ≥ k) ∧ (x− y ≤ k) ∧ ¬ inhib(g) (1)

(1): ((x = k) = true) =⇒ ((x− y ≤ k) = true).
This means that permits(g) disables switches when:

1. (x = k) is satisfied as well as g′, resulting in the ε-labeled switch
whose guard is g to be enabled, or

2. l was entered before (x = k) was satisfied, g′ was satisfied when
(x = k) was, and the current clocks valuation satisfies (x ≥ k), forcing
the ε-labeled switch to be taken.

A.5 Proof of Lemma 3

Proof. Let us consider a location l that offers several switches, including
n > 0 ε-labeled ones. By considering two switches from l, three cases are
possible.

1. The switches have both labels that are not ε. By definition their
guards are disjoint.

2. One switch ei (i ∈ {1, · · · , n}) has ε as its label with a guard

(gi
∧

1≤j 6=i≤n
permits(gj))

and the other switch has a label that is not ε and a guard

(g
∧

1≤j≤n
permits(gj))

The product of the guards contains a sub-clause (gi ∧ permits(gi))
which is false: the guards are disjoint.

170

Proof of Theorem 3

3. The two switches have ε as their label. The product of their guards
will make a sub-clause of the following form to appear:

(xi = ki) ∧ g′i ∧ permits(gj) ∧ (xj = kj) ∧ g′j ∧ permits(gi)

(i and j belong to {1, · · · , n} with i 6= j). As permits(gj)∧ g′j is false,
the guards are disjoint.

A.6 Proof of Theorem 3

Proof. The proposed constructions yields a timed automaton that qualifies
as a protocol timed automaton with respect to Definition 3. Let us have
a look at the specificities of protocol timed automata that required an ex-
tension of the construction compared to regular timed automata (Alur and
Dill [6]).

The introduction of ε-labeled switches in the resulting automaton pre-
serves determinism. Indeed, given a pair of those switches, the step 3 of the
construction makes sure that either both switches are triggered at the same
time, or one will be triggered before the other one. Without the addition
of a third ε-labeled switch that corresponds to both being triggered at the
same time, and without the addition of inequality clauses in the original
switches, there could be indeterminism, thus effectively breaking closure
under intersection.

Finally, the guards rewriting step keeps them sound with respect to
their original clocks. Indeed, consider any clock xe from either of the input
automata and its mapped clocks set {xe,e1, xe,e2, · · · , xe,en} (n > 0) in the
resulting automaton. Then per construction:

• xe is reset implies that for any i ∈ {1, 2, · · · , n}, xe,ei is also reset, and

• i ∈ {1, 2, · · · , n}, xe,ei is reset implies that xe is also reset.

171

A. Proofs

Consequently, the guard of both the input and resulting automata exhibit
the same behaviors since the clocks that they refer to have synchronous
resets.

A.7 Proof of Theorem 4

Proof. The construction of A∗ adds one location q to A as well as one new
switch per symbol of the alphabet and per location of A plus q. We first
show that the construction preserves determinism, and that given an input
symbol, it can be recognized for any clocks valuation when the current
location doesn’t have any ε-labeled switch.

As every new switch guard is defined as the negation of the disjunctions
of the guards of the switches from the same label, the intersection of the
guards of every switch on the same label for a location l is necessarily false,
meaning that those guards are disjoint. In the case where a location l does
not offer any ε-labeled switch, it is also easy to check that the disjunction of
the guards of the switches having the same label from l is true as in (Alur
and Dill [6]).

Let us now consider a location l having n > 0 ε-labeled switches gεi
(1 ≤ i ≤ n). We also consider any symbol a of the alphabet and the
m > 0 guards of the a-labeled switches from l: {g1, · · · , gm} (again, given
1 ≤ j ≤ m, gj is considered without its permits function clauses). Let us
compute the disjunction of the a-labeled switches guards:g1

∧
1≤i≤n

permits(gεi)
∨ · · ·∨

gm ∧
1≤i≤n

permits(gεm)

By construction there exists j ∈ {1, · · · ,m} such that gj = ¬
(∨

1≤k 6=j≤m
gk

)
,

hence the previous disjunction reduces to:∧
1≤i≤n

permits(gεi)

which means that a is recognized from l under M-Invoke semantics. How-
ever, A must also recognize a when this expression evaluates to false, which
is clearly not possible from l.

172

Proof of Theorem 4

Let v be a clocks valuation such that a is to be recognized and

v |=
 ∧

1≤i≤n
permits(gεi) = false

We can make the following remarks:

1. the current location is not l anymore as a ε-labeled switch has been
taken for the first clock valuation that stopped satisfying the previous
expression, and

2. the current location change through the ε-labeled switch was instan-
taneous.

Let us call the current location l′. By construction, it offers a-labeled
switches. From the remarks above, the guard of every switch satisfies

¬

 ∧
1≤i≤n

permits(gεi)

for the clocks valuation v.
Consequently, a can always be recognized from l and the locations avail-

able through its ε-labeled switches: ∧
1≤i≤n

permits(gεi)
∨¬

 ∧
1≤i≤n

permits(gεi)
 = true

173

Two

Semantics of protocol timed automata

The semantics of protocol timed automata over an infinite labeled transition
system SA are borrowed from those of event-clock automata (Rajeev Alur
et al. [119]), another class of timed automata defined over T = R≥0 ∪ {⊥}.

Definition 8 (Protocol timed automata semantics). The semantic of a pro-
tocol timed automaton A = (L,L0, Lf , X ∪Y,E,Σ) is given by the (infinite)
LTS SA = (S, s0,→,Σ) where:

• S = L × TX is the set of states (l, v) (also called configurations)
comprising each a location and a clocks valuation,

• s0 = (l0, v0) with l0 ∈ L0 and v0(x) =⊥ ∀x ∈ X,

• → is the transition relation:

– action transitions: (l, v) a−→ (l′, v′) if and only if there exists
e = (l, g, a, r, l′) ∈ E such that v |= g, v′ = [r ← 0]v

– time transitions: d−→ (l, v′) for d ∈ R≥0 if ∀x ∈ X:

∗ if v(x) 6=⊥ then v′(x) = v(x) + d, else

∗ if v(x) =⊥ then v′(x) =⊥.

A timed word w is recognized by a protocol timed automaton A if there
exists a run over SA: (l0, v0) d0−→ (l0, v1) a−→ (l1, v1) ···−→ · · · ···−→ (ln, vn)

175

B. Semantics of protocol timed automata

such that ln ∈ LF .

Reachability analysis is the key to most of the analysis techniques on
timed automata. The formal grounds for this reside in the ability to group
“similar” configurations that each comprise the current location and a clocks
valuation. Those groups, called regions, are built using an equivalence re-
lation between the configurations that represent the states of the (infinite)
labeled transition system associated to a timed automaton (Alur and Dill
[6]). We adapt an equivalence relation for protocol timed automata.

We define an equivalence relation between the states of SA, denoted as
∼=. We denote the integer part of a real-valued number r ∈ R≥0 as brc and
its fractional part as {r} (e.g., b2.55c = 2 and {2.55} = 0.55).

Definition 9. Two configurations (l, v) and (l′, v′) are equivalent, denoted
as (l, v) ∼= (l′, v′) if l = l′ and:

1. ∀x ∈ X:

• if v(x) =⊥ then v′(x) =⊥, else

• bv(x)c = bv′(x)c or both v(x) > cx and v′(x) > cx

2. ∀x, y ∈ X such as v(x) ≤ cx and v(y) ≤ cy, then {v(x)} ≤ {v(y)} if
and only if {v′(x)} ≤ {v′(y)}

3. ∀x ∈ X such as v(x) ≤ cx, {v(x)} = 0 if and only if {v(x)} = 0.

176

Three

An overview of UPPAAL

We present here the model used in UPPAAL which is based on timed au-
tomata. Then, we present the query language of UPPAAL before finishing
with the tools that it provides.

C.1 UPPAAL model and query language

UPPAAL uses an hybrid extension of timed automata as a model and a sub-
set of TCTL as a query language to express properties. Briefly, an hybrid
system (Alur et al. [5]) features both continuous (e.g., variables in R) and
discrete behavior (e.g., variables in N). This allows mixing discrete variables
such as booleans or integers with clocks in the models that are processed by
UPPAAL. Those discrete variables can be used in guards, invariants and
be reset on switches just like a clock would be. Actually, a timed automa-
ton can be viewed as a linear hybrid automaton whose continuous variables
evolve at a constant rate (Alur et al. [5]). Further pointers on hybrid au-
tomata can be found in (Alur et al. [11]; Henzinger et al. [72]; Miller [93]).

We summarize here the types of formula that can be defined for queries
in UPPAAL as detailed in (Behrmann et al. [14]). We will use Figure C.1
to illustrate them. To begin with, we need state formula. Such a formula
can be made from clock constraints (e.g., (x < 3.75) ∧ (y ≥ 5)) and tests

177

C. An overview of UPPAAL

A [] E

A E []

state

state for which the
formula is true

edge

edge for which the
formula evaluates on

(source: (Behrmann et al. [14]))

Figure C.1: The path formulae that UPPAAL supports.

that check if a system is in a given location or not (e.g., P.l is true when the
system P is currently in the l location). By combining them using boolean
conjunctions and disjunctions, it is possible to define complex state formu-
lae such as ϕ = (x < 3.75) ∧ (y ≥ 5) ∧ P.l. There is also a special state
formula deadlock that is true when neither the current extended state (l, v)
offers an outgoing action transition nor there exists a time successor (l, v′)
that does so. Using state formulae as a basis, the path formulae that can
be expressed have been summarized in Table C.1.

Going back to the examples of verifications that we expressed as property
1 and property 2 on Figure 3.3, the properties can be checked by UPPAAL
using the following formulae:

• property 1 : E♦(Model.off ∧ x = 10) (the location Model.off is reach-

178

UPPAAL tools

Formula Semantic Analysis
E♦ϕ There exists a path to a state (l, v) that verifies

ϕ.
Reachability

A�ϕ Every reachable state (l, v) satisfies ϕ. Safety
E�ϕ There exists a path to a state (l, v) with no

outgoing transition that satisfies ϕ, or there
exists an infinite path where ϕ is satisfied by
all states at some point.

Safety

A♦ϕ For every possible path, there exists a state
(l, v) such that ϕ is satisfied.

Liveness

ϕ → ψ, or equiv-
alently A�(ϕ ⇒
A♦ψ)

Given a state (l1, v1) satisfying ϕ, every path
starting from it contains a state (l2, v2) such
that ψ is satisfied.

Liveness

Table C.1: Semantics of the path formulae supported by UPPAAL (a subset
of TCTL).

able while the clock x has a valuation of 10)

• property 2 : E♦(Model.off ∧ x = 1) (there is a path to a state in the
LTS of Model such that the current location is Model.off and the
current valuation of the clock x is 1).

UPPAAL evaluates the first property to true and the second one to false.
Please note that “undesirable” properties (i.e., the ones that should nor-
mally evaluate to false) are expressed positively in UPPAAL (as opposed
to negatively using a boolean negation operator).

UPPAAL supports a subset of TCTL. which provides more path for-
mulae. Also, TCTL allows nested path formulae, something that UPPAAL
does not support.

C.2 UPPAAL tools

UPPAAL comprises two main components:

1. a command-line model checker called verifyta, written in C and ported
to Unix variants (Linux, *BSD), Windows and Mac OS X, and

2. a graphical user interface (GUI) written in Java.

179

C. An overview of UPPAAL

Figure C.2: UPPAAL: modeling environment.

The UPPAAL GUI (see Figure C.2) is a comprehensive environment for
modeling, simulating and verifying systems represented as timed automata.
The editor allows to define a set of (usually interacting) systems (e.g., the
gate, barrier controller and train systems of the examples found in (Alur
and Dill [6]) or the light controller of Figure 3.3).

The simulator component (see Figure C.3) allows users to simulate the
execution of the systems to see which switches are taken, what are the
clocks valuation ranges at each step and so on. The simulation can be run
automatically by the tool: when several switches can be enabled from a
given location, the next switch is selected randomly. Otherwise, the user
can select which switch should be taken next at each step. In the later
case, the simulator acts as a kind of step-by-step debugger as found for
traditional programming using languages such as C/C++ or Java.

180

UPPAAL tools

Figure C.3: UPPAAL: simulation environment.

Finally, the verification component (see Figure C.4) allows to perform
model checking tasks by encoding requests in (timed) temporal logics. In
fact, this component is directly using the command-line verifyta tool to
perform the verifications.

181

C. An overview of UPPAAL

Figure C.4: UPPAAL: verification environment.

182

Four

UPPAAL and protocol timed automata

As we will see hereafter, checking emptiness on protocol timed automata
with UPPAAL is not straightforward. We first explain the issues in con-
verting a protocol timed automaton into an automaton that UPPAAL can
process. We then propose a procedure for performing a semantic-preserving
conversion. Finally, we illustrate it on the protocol P ′2 of Figure D.1.

D.1 Conversion issues

We use UPPAAL for verifying whether a timed protocol is empty or not,
i.e., whether it supports at least a conversation or not. To do that, we
consider each final location of a protocol timed automaton and leverage
UPPAAL to verify if it can be reached from its initial location or not (i.e.,
there exists a timed word whose execution over the protocol timed automa-
ton ends in the considered final location). The language that is recognized
by a protocol timed automaton is not empty as long as one final location
can be reached.

This checking is however not straightforward. Indeed, a protocol timed
automaton cannot be directly given to UPPAAL:

1. clocks in UPPAAL are defined over R≥0 whereas protocol timed au-

183

D. UPPAAL and protocol timed automata

tomata are defined over R≥0 ∪ {⊥}, and

2. in protocol timed automata, the clocks are initially set to ⊥ and
keep this value until they have been reset for the first time while in
classical timed automata (and hence for UPPAAL) they start from 0
and immediately start their progression, and

3. UPPAAL expects the guards to be conjunctions of atomic clock con-
straints (e.g., x# k) and diagonal constraints (e.g., x− y # k).

D.2 Conversion technique

These differences can be overcome as UPPAAL does not work on strict
timed automata, but rather uses an hybrid model where non-clock vari-
ables can be defined, reset on switches and used in guards (Behrmann et al.
[14]). We propose the following procedure for checking protocol timed au-
tomata emptiness using UPPAAL. It has been implemented as part of the
ServiceMosaic Protocols project presented earlier.

Procedure 4. Let us consider a protocol timed automaton A. The first
step is to generate a UPPAAL model Process as follows.

1. Remove the disjunctions in the guards of A:

a) obtain the abstract syntax tree (AST) of each constraint, then

b) use an AST visitor (Gamma et al. [63]): for each disjunction
node, split into two switches (the disjunction node is replaced by
the left-hand node in one switch guard, and by the right-hand
node in the other switch guard)

c) repeat until no AST contains a disjunction.

2. Assign a unique boolean variable bx (initially set to false) to each
switch that is set to true in the switch reset. This encodes ⊥.

3. Using an AST visitor, for each constraint clause (x # k) where k 6=⊥,
rewrite as (x # k)∧ (bx = true) (note that it does not make sense to

184

Sample conversion and emptiness checking

write a diagonal constraint comparing to ⊥). When k =⊥, rewrite it
as (x # k) ∧ (bx = false).

Finally, to check for emptiness: for each final location l, the corre-
sponding TCTL property to be passed to UPPAAL is E<> Process.l and
the procedure stops at the first final location l such that the property is met,
else the the timed language is empty.

We can point out the following remarks.

• A procedure can be derived from this one to verify event-recording
timed automata using UPPAAL.

• The procedure generates an automaton which is not a protocol timed
automaton.

• Removing disjunctions from guards had already been discussed in
(Beatrice Berard et al. [13]) – in fact the technique is the same.

D.3 Sample conversion and emptiness
checking

Let us consider the protocol timed automaton P2 of Figure 6.1. The con-
version to a UPPAAL automaton is illustrated on Figure D.1 along with
the emptiness checking. As we can see, the conversion involves adding an
extra switch between S ′2 and S ′3 as the permits clause is disjunctive and
UPPAAL forbids disjunctions in guards.

The emptiness checking is performed using the following query:

E♦ Process.s3

On the figure, we have also added another query:

E♦ Process.s3 and (Process.x_t2− Process.y_s2 > 10)

185

D. UPPAAL and protocol timed automata

Figure D.1: Emptiness checking of protocol timed automata with UPPAAL.

186

Sample conversion and emptiness checking

that checks that the ε-labeled switch is enforced. Indeed, due to the con-
figuration of this automaton, the added switch with a guard ((x_t2 > 10)
and (x_t2 - y_s2 > 10)) cannot be taken under M-Invoke semantics.

Here is the corresponding UPPAAL automaton XML file:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE nta PUBLIC "-//Uppaal Team//DTD Flat System 1.1//EN"
"http://www.it.uu.se/research/group/darts/uppaal/flat-1_1.dtd">
<nta>

<declaration></declaration>
<template>

<name x="5" y="5">Template</name>
<declaration>

clock x_t1;
clock x_t2;
clock x_t3;
clock x_t4;
clock y_s2;
bool bx_t1 = false;
bool bx_t2 = false;
bool bx_t3 = false;
bool bx_t4 = false;

</declaration>
<location id="id0" x="224" y="-320">

<name x="214" y="-350">s3</name>
</location>
<location id="id1" x="-40" y="-320">

<name x="-50" y="-350">s2</name>
</location>
<location id="id2" x="-312" y="-320">

<name x="-322" y="-350">s1</name>
</location>
<location id="id3" x="-536" y="-320">

<name x="-546" y="-350">s0</name>
</location>
<init ref="id3"/>
<transition>

<source ref="id1"/>

187

D. UPPAAL and protocol timed automata

<target ref="id0"/>
<label kind="guard" x="-8" y="-456">

((x_t2 > 10) and (x_t2 - y_s2 > 10))</label>
<label kind="assignment" x="32" y="-320">

x_t3 = 0, bx_t3 = true</label>
<nail x="88" y="-424"/>

</transition>
<transition>

<source ref="id1"/>
<target ref="id2"/>
<label kind="guard" x="-240" y="-448">

(x_t2 == 10)</label>
<label kind="assignment" x="-240" y="-432">

x_t4 = 0, bx_t4 = true</label>
<nail x="-168" y="-416"/>

</transition>
<transition>

<source ref="id1"/>
<target ref="id0"/>
<label kind="guard" x="56" y="-344">(x_t2 < 10)</label>
<label kind="assignment" x="-8" y="-440">

x_t3 = 0, bx_t3 = true</label>
</transition>
<transition>

<source ref="id2"/>
<target ref="id1"/>
<label kind="assignment" x="-288" y="-320">

x_t2 = 0, bx_t2 = true, y_s2 = 0</label>
</transition>
<transition>

<source ref="id3"/>
<target ref="id2"/>
<label kind="assignment" x="-504" y="-320">

x_t1 = 0, bx_t1 = true</label>
</transition>

</template>
<system>

Process = Template();
system Process;

188

Sample conversion and emptiness checking

</system>
</nta>

Here is also the UPPAAL queries file:

E<> Process.s3
E<> Process.s3 and (Process.x_t2 - Process.y_s2 > 10)

189

Notice regarding the production of this document

This document was produced with a LATEX-based tools chain and the memoir class by
Peter Wilson which is available from CTAN at http://www.ctan.org/tex-archive/macros/
latex/contrib/memoir/.

Screen captures of various softwares appear in several places of this document. Those
images were captured by the author for the sole purpose of illustration.

The figures were produced using the OpenOffice.org Draw software which is available
from http://www.openoffice.org/. Some graphic elements used in the figures originate
from the Crystal Project and the Tango Desktop Project. They are used in due respect to
their (permissive) licenses agreements. Refer to http://everaldo.com/crystal/ and http:
//tango.freedesktop.org/Tango_Desktop_Project for more informations.

191

http://www.ctan.org/tex-archive/macros/latex/contrib/memoir/
http://www.ctan.org/tex-archive/macros/latex/contrib/memoir/
http://www.openoffice.org/
http://everaldo.com/crystal/
http://tango.freedesktop.org/Tango_Desktop_Project
http://tango.freedesktop.org/Tango_Desktop_Project

	Contents
	List of Figures
	List of Tables
	Introduction and background
	Introduction
	Context
	Research issues
	Contributions
	Outline

	Web services
	Enterprise integration
	Application architectures
	Middlewares

	Service-oriented computing
	Service-oriented architectures
	Technologies
	Service description and discovery

	Business protocols
	Model
	Protocol analysis
	Discussion and related work

	Timed automata
	Overview
	Model and semantics
	Classic problems

	Classes of timed automata
	Software tools

	Protocol modeling and analysis
	Timed protocol modeling
	Timing abstractions
	Motivating examples
	Timing abstraction primitives

	Extending business protocols with temporal abstractions
	Timed business protocols
	Formalization

	From timed protocols to protocol timed automata
	Informal overview of the challenges
	Protocol timed automata
	Enforcing M-Invoke constraints in protocol timed automata
	Theoretical results

	Discussion
	Relationship to event-clock automata
	Constraints with absolute dates
	Message transport communications

	Protocol analysis
	Classes of protocol-based analysis
	Protocol-level compatibility
	Protocol-level replaceability

	Protocol operators
	Characterizing the compatibility and replaceability classes
	Discussion
	Related work
	Message matching

	Properties of protocol operators
	Results in protocol timed automata
	Intersection of protocol timed automata
	Complementation of protocol timed automata

	Results for timed protocol operators

	Applications and perspectives
	The ServiceMosaic Protocols project
	ServiceMosaic
	Project overview
	Technical overview

	Prototype: the ServiceMosaic Protocols project
	Components
	Protocol extraction

	Protocol analysis at work
	BPEL process outline
	Business protocols extraction
	Protocol analysis
	Managing partial replaceability scenarios

	Conclusion and perspectives
	Summary
	Perspectives beyond protocol analysis
	Publications

	Bibliography

	Appendix
	Proofs
	Proof of Theorem 1
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 2
	Proof of Lemma 3
	Proof of Theorem 3
	Proof of Theorem 4

	Semantics of protocol timed automata
	An overview of UPPAAL
	UPPAAL model and query language
	UPPAAL tools

	UPPAAL and protocol timed automata
	Conversion issues
	Conversion technique
	Sample conversion and emptiness checking

