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Business protocols

✓ Finite deterministic automata

✓ Conversations = language

✓ Extensions: transactions, timing constraints, 
policies, ...

start logged searching answered

login(+) search(+) answer(-)

search(+)
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(flexible) classes

Compatibility Replaceability

Full Full

Partial Partial

Subsumption, equivalence

w.r.t. client protocol

w.r.t. interaction role
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It facilitates...

Binding Discovery
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Time is everywhere!

TCP/IP

Watchdogs

Transaction locks

Business agreements

BPEL (wait / onAlarm)

RosettaNet

(...)
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Timed automata (Alur, Dill 94)

s0 s2s1

a b

Clocks over dense time

Guards and resets

Extensive research in model checking

{x} (x < 5)

L = {(a, t1) · (b, t2) | t2 − t1 < 5}

reset guard
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gm ∧ permits(gε)
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MInvoke inhibitor

inhib ((xT2 = 10) ∧ (xT3 < 5)) = (xT3 − xT2 ≥ 5− 10)
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MInvoke inhibitor

inhib ((xT2 = 10) ∧ (xT3 < 5)) = (xT3 − xT2 ≥ 5− 10)

v(xT2) = 10

(xT3 ≥ 5)
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Please note that...

inhib (xT2 = 10) = false
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Permitting / disabling

From timed protocols to protocol timed automata

Going back to the timed automaton of Figure 4.6:




inhib(g1) = false
inhib(g2) = (xT2 − xT1 ≤ −8)

Without loss of generality, we chose to reduce the ε-labeled switch guard
g to a unique conjunction in the previous definition to simplify the nota-
tions. The case where g is a disjunction is easy: we consider it as multiple
ε-labeled switches with each switch having a single conjunctive guard. We
keep this assumption in the remainder.

With this inhib function at hand, we can now define a function called
permits. When given the guard of a ε-labeled switch, it defines when the
other switches from the same source location can be enabled without con-
tradicting M-Invoke constraints.

Definition 6 (permits function). Let a guard g := (x = k)∧g� of a ε-labeled
switch defined over a ε-labeled switch l → l� such as x is a clock over T,
k is a constant in Q ∪ {⊥} and g� is any clocks constraint. Let y ∈ Y the
clock that is commonly reset by all the switches whose target location is l.
We define the following clauses:

1. S1 = (x < k)

2. S2 = (x > k) ∧ (x− y > k)

3. S3 = (x > k) ∧ (x− y ≤ k) ∧ inhib(g)

4. S4 = (x = k) ∧ inhib(g)

The function permits(g) is defined as

permits(g) =
�

i∈{1,2,3,4}
Si

The permits function disjunctive clauses play the following roles. S1

captures the cases where the current clocks valuation v ensures that v(x) is
still below k. S2 captures the cases where v is above k and the location l has

81

ε
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81

permits(g)

41



Permitting / disabling

From timed protocols to protocol timed automata

Going back to the timed automaton of Figure 4.6:




inhib(g1) = false
inhib(g2) = (xT2 − xT1 ≤ −8)

Without loss of generality, we chose to reduce the ε-labeled switch guard
g to a unique conjunction in the previous definition to simplify the nota-
tions. The case where g is a disjunction is easy: we consider it as multiple
ε-labeled switches with each switch having a single conjunctive guard. We
keep this assumption in the remainder.

With this inhib function at hand, we can now define a function called
permits. When given the guard of a ε-labeled switch, it defines when the
other switches from the same source location can be enabled without con-
tradicting M-Invoke constraints.

Definition 6 (permits function). Let a guard g := (x = k)∧g� of a ε-labeled
switch defined over a ε-labeled switch l → l� such as x is a clock over T,
k is a constant in Q ∪ {⊥} and g� is any clocks constraint. Let y ∈ Y the
clock that is commonly reset by all the switches whose target location is l.
We define the following clauses:

1. S1 = (x < k)

2. S2 = (x > k) ∧ (x− y > k)

3. S3 = (x > k) ∧ (x− y ≤ k) ∧ inhib(g)

4. S4 = (x = k) ∧ inhib(g)

The function permits(g) is defined as

permits(g) =
�

i∈{1,2,3,4}
Si

The permits function disjunctive clauses play the following roles. S1

captures the cases where the current clocks valuation v ensures that v(x) is
still below k. S2 captures the cases where v is above k and the location l has

81

ε

From timed protocols to protocol timed automata

Going back to the timed automaton of Figure 4.6:




inhib(g1) = false
inhib(g2) = (xT2 − xT1 ≤ −8)

Without loss of generality, we chose to reduce the ε-labeled switch guard
g to a unique conjunction in the previous definition to simplify the nota-
tions. The case where g is a disjunction is easy: we consider it as multiple
ε-labeled switches with each switch having a single conjunctive guard. We
keep this assumption in the remainder.

With this inhib function at hand, we can now define a function called
permits. When given the guard of a ε-labeled switch, it defines when the
other switches from the same source location can be enabled without con-
tradicting M-Invoke constraints.

Definition 6 (permits function). Let a guard g := (x = k)∧g� of a ε-labeled
switch defined over a ε-labeled switch l → l� such as x is a clock over T,
k is a constant in Q ∪ {⊥} and g� is any clocks constraint. Let y ∈ Y the
clock that is commonly reset by all the switches whose target location is l.
We define the following clauses:

1. S1 = (x < k)

2. S2 = (x > k) ∧ (x− y > k)

3. S3 = (x > k) ∧ (x− y ≤ k) ∧ inhib(g)

4. S4 = (x = k) ∧ inhib(g)

The function permits(g) is defined as

permits(g) =
�

i∈{1,2,3,4}
Si

The permits function disjunctive clauses play the following roles. S1

captures the cases where the current clocks valuation v ensures that v(x) is
still below k. S2 captures the cases where v is above k and the location l has

81

permits(g)

41



Generalization

s1 s2

s3

s4

g ∧ permits(g1) ∧ permits(g2)

g1 ∧ permits(g2)

g2 ∧ permits(g1)

ε

a

ε
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Class characterization

New results



What do we need?

�

≡

||tc

||ti

||td

language inclusion

intersection

complementation
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Timed automata
Problem Result

Union Closed

Intersection Closed

Projection Closed

Complementation Not closed

Language inclusion Not decidable

Language equivalence Not decidable

Universality Not decidable

Emptiness / reachability PSPACE-Complete
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Better classes?

Class Complementation
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Better classes?

Class Complementation

Deterministic TA Closed

Event-clock TA Closed

(others) Not closed

Silent transitions!
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Expressiveness

Silent transitions cannot be removed!
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Expressiveness

Silent transitions cannot be removed!

Corrolary 29 of  “Characterization of the expressive power of 
silent transitions in timed automata”, B.Bérard, V.Diekert, P. Gastin 
and A. Petit

Clocks resets
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Complementation

s1 s2 s3

a(+)

{xT1}
b(+)

(xT1 < 3)

50



Complementation

s1 s2 s3

a(+)

{xT1}
b(+)

(xT1 < 3)

q

a(+)(xT1 ≥ 3)
b(+)

a, b

a, b

b(+)

50



Complementation

s3

q

a(+)

{xT1}
b(+)

(xT1 < 3)

a(+)(xT1 ≥ 3)
b(+)

a, b

a, b

s2s1

b(+)
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Closure: complementation

51

“one run per
timed word”



Closure: complementation
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“one run per
timed word”

MInvoke make
precise!

MInvoke(T1 = 3h and T2 < 25m)



Protocol timed automata
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1 clock per switch

“1 clock per location”

Restricted form of unremovable silent transitions

Deterministic behavior

Closed under complementation!



Protocol operators
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Intersection

s0 s1 s2 s3

a(+), g1, {xT1} a(+), g2, {xT2}
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(s0,s2) (s1,s3)

a(+), g1 ∧ g2, {xT1T2}
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Intersection

s0 s1 s2 s3

a(+), g1, {xT1} a(+), g2, {xT2}

(s0,s2) (s1,s3)

a(+), g1 ∧ g2, {xT1T2}

54



Intersection

s0 s1

s2

ε, g2 = (x1 = k1) ∧ g�
2

a(+), g1 ∧ permits(g2)
s3 s4

s5

ε, g4 = (x2 = k2) ∧ g�
4

a(+), g3 ∧ permits(g4)

55



Intersection

s0 s1

s2

ε, g2 = (x1 = k1) ∧ g�
2

a(+), g1 ∧ permits(g2)
s3 s4

s5

ε, g4 = (x2 = k2) ∧ g�
4

a(+), g3 ∧ permits(g4)

(s0,s3) (s1,s4)

(s2,s3)

(s0,s5)

(s2,s5)

a(+), g1 ∧ g3

ε

ε

ε

ε

ε

55



Intersection

s0 s1

s2

ε, g2 = (x1 = k1) ∧ g�
2

a(+), g1 ∧ permits(g2)
s3 s4

s5

ε, g4 = (x2 = k2) ∧ g�
4

a(+), g3 ∧ permits(g4)

(s0,s3) (s1,s4)

(s2,s3)

(s0,s5)

(s2,s5)

a(+), g1 ∧ g3

ε

ε

ε

ε

ε

55



Intersection

s0 s1

s2

ε, g2 = (x1 = k1) ∧ g�
2

a(+), g1 ∧ permits(g2)
s3 s4

s5

ε, g4 = (x2 = k2) ∧ g�
4

a(+), g3 ∧ permits(g4)

(s0,s3) (s1,s4)

(s2,s3)

(s0,s5)

(s2,s5)

a(+), g1 ∧ g3

ε

ε

ε

ε

ε

56



Intersection

s0 s1

s2

ε, g2 = (x1 = k1) ∧ g�
2

a(+), g1 ∧ permits(g2)
s3 s4

s5

ε, g4 = (x2 = k2) ∧ g�
4

a(+), g3 ∧ permits(g4)

(s0,s3) (s1,s4)

(s2,s3)

(s0,s5)

(s2,s5)

a(+), g1 ∧ g3

ε

ε

ε

ε

ε

56



Intersection

s0 s1

s2

ε, g2 = (x1 = k1) ∧ g�
2

a(+), g1 ∧ permits(g2)
s3 s4

s5

ε, g4 = (x2 = k2) ∧ g�
4

a(+), g3 ∧ permits(g4)

(s0,s3) (s1,s4)

(s2,s3)

(s0,s5)

(s2,s5)

a(+), g1 ∧ g3

ε

ε

ε

ε

ε

56



Intersection

s0 s1

s2

ε, g2 = (x1 = k1) ∧ g�
2

a(+), g1 ∧ permits(g2)
s3 s4

s5

ε, g4 = (x2 = k2) ∧ g�
4

a(+), g3 ∧ permits(g4)

(s0,s3) (s1,s4)

(s2,s3)

(s0,s5)

(s2,s5)

a(+), g1 ∧ g3

ε

ε

ε

ε

ε

57



Intersection

s0 s1

s2

ε, g2 = (x1 = k1) ∧ g�
2

a(+), g1 ∧ permits(g2)
s3 s4

s5

ε, g4 = (x2 = k2) ∧ g�
4

a(+), g3 ∧ permits(g4)

(s0,s3) (s1,s4)

(s2,s3)

(s0,s5)

(s2,s5)

a(+), g1 ∧ g3

ε

ε

ε

ε

ε

57



Intersection

s0 s1

s2

ε, g2 = (x1 = k1) ∧ g�
2

a(+), g1 ∧ permits(g2)
s3 s4

s5

ε, g4 = (x2 = k2) ∧ g�
4

a(+), g3 ∧ permits(g4)

(s0,s3) (s1,s4)

(s2,s3)

(s0,s5)

(s2,s5)

a(+), g1 ∧ g3

ε

ε

ε

ε

ε

+ permits

+ y clocks

57



Complementation

s1 s2

s3

ε, gε

a(+), g1 ∧ permits(gε)

a(+), g2 ∧ permits(gε)

s4
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Complementation

s1 s2

s3

ε, gε

a(+), g1 ∧ permits(gε)

a(+), g2 ∧ permits(gε)

s4

q

¬(g1 ∨ g2) ∧ permits(gε)
a(+)
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Emptiness checking

(...)
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Emptiness checking

(...)
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Emptiness checking

(...)

remains PSPACE-Complete
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Closure / decidability

Problem Result

Intersection Closed

Complementation Closed

Emptiness PSPACE-Complete
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Closure / decidability

Problem Result

Intersection Closed

Complementation Closed

Emptiness PSPACE-Complete

60



Protocol operators

Closure under:
• intersection
• parallel composition
• difference

Subsumption and equivalence are decidable
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Applications
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UNSW (Australia)

LIMOS (France)

U. Trento (Italy)

LIRIS (France)

http://servicemosaic.isima.fr/
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AntLR

Protocols model library

Eclipse
platform

GroovyUPPAAL

Protocols extraction libraryOperators library Graphical editing framework

Eclipse plug-ins: editor, analysis, operators, extractor, help

Protocols project
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Services with protocols
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Services with protocols

Development
environments

Runtime
environments

Composite
application

Compatibility Replaceability
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“Agile” composition

Facilitate rapid 
prototyping

Facilitate hot 
replacement
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Limits

• No network hazard

• No absolute time

• “a == a”
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Protocols
database
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Querying

Protocols
database

Compatibility? Replaceability?
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Testing
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Protocol+ Test cases
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Testing

Service

Protocol+ Test cases

Minimal coverage?

Meaningful & bogus data?

Loops handling?
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Controllers

Service

Requesters

Protocol

Controller
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Mining

Execution logs

Protocol
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Adaptation

Service
protocol

Client
protocolMismatch
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Adaptation

Service
protocol

Client
protocolAdapter
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Thank you!

http://www.isima.fr/~ponge/

http://www.isima.fr/~ponge/
http://www.isima.fr/~ponge/

