
Model Based Analysis of
Time-aware Web Services

Interactions

Julien Ponge

PhD thesis defense

Outline

Introduction

Timed protocols modeling

Prototyping, applications

1

2

Theoretical study of time impacts

Conclusion

2

3

4

5

Introduction

3

databases, new & legacy applications
4

RPC, MOM, ESB, ...

databases, new & legacy applications

applications and clients

4

my company

RPC, MOM, ESB, ...

databases, new & legacy applications

applications and clients

partner 1 partner 2

4

my company

RPC, MOM, ESB, ...

databases, new & legacy applications

applications and clients

partner 1 partner 2

vpn
&

adapters
HTML

4

my company

RPC, MOM, ESB, ...

databases, new & legacy applications

applications and clients

partner 1 partner 2

Web services

XML, SOAP, HTTP, ...

4

Web service

Static vs dynamic interface
WSDL AnswerMessage

LoginMessage

SearchMessage

answer

login

search
{

5

Web service

Static vs dynamic interface
WSDL AnswerMessage

LoginMessage

SearchMessage

answer

login

search
{

login, search, answer
login, search,, answer, search, answer
(...)

search, login, answer
answer, search, login
(...)

5

Business protocols

✓ Finite deterministic automata

✓ Conversations = language

✓ Extensions: transactions, timing constraints,
policies, ...

start logged searching answered

login(+) search(+) answer(-)

search(+)

6

Compatibility

Service Requester

7

Compatibility

Service Requester

7

Replaceability

Service Requester

8

Replaceability

Service Requester

8

Replaceability

Service Requester

Service

?

8

(flexible) classes

Compatibility Replaceability

Full Full

Partial Partial

Subsumption, equivalence

w.r.t. client protocol

w.r.t. interaction role

9

It facilitates...

Binding Discovery

10

Problem overview

Protocols

- model
- analysis
- operators

11

Problem overview

Protocols

- model
- analysis
- operators

Timed
protocols

- model
- analysis
- operators

Time

11

Time is everywhere!

TCP/IP

Watchdogs

Transaction locks

Business agreements

BPEL (wait / onAlarm)

RosettaNet

(...)
12

Contributions

13

Contributions

13

Prototype

Impact

Model Timed protocols

Timed automata + a new class

ServiceMosaic + applications

Outline

Introduction

Timed protocols modeling

Prototyping, applications

1

14

Theoretical study of time impacts

Conclusion

2

3

4

5

Timed protocols
15

M-Invoke

C-Invoke

Timing constraints

16

M-Invoke

C-Invoke

Timing constraints

16

M-Invoke

C-Invoke

Timing constraints

implicit transition

16

s5

s6

s7

s8

T6: loanOffer(-)

T7: acceptLoan(+)

C-Invoke(T6 > 11d)

T8: offerExpired

M-Invoke(T6 = 30d)

Extensions

17

s5

s6

s7

s8

T6: loanOffer(-)

T7: acceptLoan(+)

C-Invoke(T6 > 11d)

T8: offerExpired

M-Invoke(T6 = 30d)

Extensions

17

s5

s6

s7

s8

T6: loanOffer(-)

T7: acceptLoan(+)

C-Invoke(T6 > 11d)

T8: offerExpired

M-Invoke(T6 = 30d)

Extensions

17

“silent”

s5

s6

s7

s8

T6: loanOffer(-)

T7: acceptLoan(+)

C-Invoke(T6 > 11d)

T8: offerExpired

M-Invoke(T6 = 30d)

Extensions

17

“silent”

(loanOffer, today) (acceptLoan, today+12d)

s5

s6

s7

s8

T6: loanOffer(-)

T7: acceptLoan(+)

C-Invoke(T6 > 11d)

T8: offerExpired

M-Invoke(T6 = 30d)

Extensions

17

“silent”

(loanOffer, today) (acceptLoan, today+2d)

(loanOffer, today) (acceptLoan, today+12d)

MInvoke semantics

18

MInvoke(T1 = 1h)

MInvoke(T1 = 1h && T2 > 5m)

s1

s2

MInvoke

MInvoke(T1 = 1h || (T2 = 30m && T3 < 15m)

MInvoke semantics

18

MInvoke(T1 = 1h)

MInvoke(T1 = 1h && T2 > 5m)

s1

s2

MInvoke

MInvoke(T1 = 1h || (T2 = 30m && T3 < 15m)

MInvoke(T1 > 1h)

CInvoke vs MInvoke

s s1

s2

a(+), C-Invoke(T1 < 3)

b(+)

19

CInvoke vs MInvoke

s s1

s2s3

b(+)

a(+)

b(+)

M-Invoke(T1 = 3)

19

CInvoke vs MInvoke

s s1

a(+), C-Invoke(T1 = 3)

19

CInvoke vs MInvoke

s s1

M-Invoke(T1 = 3)

s3s2

a(+)M-Invoke(T1 = k)

19

Time-sensitive compatibility

start logged searching answered

T1: login(+) T2: search(+)

C-Invoke(T1 < 1h)

T4: answer(-)

T3: search(+)
C-Invoke(T1 < 1h)

20

Time-sensitive compatibility

start logged searching answered

T1: login(+) T2: search(+)

C-Invoke(T1 < 1h)

T4: answer(-)

T3: search(+)
C-Invoke(T1 < 1h)

start logged searching answered

T1: login(-) T2: search(-) T4: answer(+)

20

Time-sensitive compatibility

start logged searching answered

T1: login(+) T2: search(+)

C-Invoke(T1 < 1h)

T4: answer(-)

T3: search(+)
C-Invoke(T1 < 1h)

start logged searching answered

T1: login(-) T2: search(-) T4: answer(+)

20

Time-sensitive compatibility

start logged searching answered

T1: login(+) T2: search(+)

C-Invoke(T1 < 1h)

T4: answer(-)

T3: search(+)
C-Invoke(T1 < 1h)

start logged searching answered

T1: login(-) T2: search(-) T4: answer(+)

C-Invoke(T1 >= 1h)

20

Time-sensitive compatibility

start logged searching answered

T1: login(+) T2: search(+)

C-Invoke(T1 < 1h)

T4: answer(-)

T3: search(+)
C-Invoke(T1 < 1h)

start logged searching answered

T1: login(-) T2: search(-) T4: answer(+)

C-Invoke(T1 >= 1h)

20

Full compatibility

s1 s3s2
T1: a(+) T2: b(-)

CInvoke(1h < T1 < 1h30m)

Full compatibility

s1 s3s2
T1: a(+) T2: b(-)

CInvoke(1h < T1 < 1h30m)

s1 s3s2

s4

T1: a(-)

T2: b(+)

T3: c(+)

T4: delay
MInvoke(T1 = 3m)

T5: expiration
MInvoke(T4 = 2h)

Full compatibility

s1 s3s2
T1: a(+) T2: b(-)

CInvoke(1h < T1 < 1h30m)

s1 s3s2

s4

T1: a(-)

T2: b(+)

T3: c(+)

T4: delay
MInvoke(T1 = 3m)

T5: expiration
MInvoke(T4 = 2h)

Full compatibility

s1 s3s2
T1: a(+) T2: b(-)

CInvoke(1h < T1 < 1h30m)

s1 s3s2

s4

T1: a(-)

T2: b(+)

T3: c(+)

T4: delay
MInvoke(T1 = 3m)

T5: expiration
MInvoke(T4 = 2h)

Full compatibility

s1 s3s2
T1: a(+) T2: b(-)

CInvoke(1h < T1 < 1h30m)

s1 s3s2

s4

T1: a(-)

T2: b(+)

T3: c(+)

T4: delay
MInvoke(T1 = 3m)

T5: expiration
MInvoke(T4 = 2h)

Full compatibility

s1 s3s2
T1: a(+) T2: b(-)

CInvoke(1h < T1 < 1h30m)

s1 s3s2

s4

T1: a(-)

T2: b(+)

T3: c(+)

T4: delay
MInvoke(T1 = 3m)

T5: expiration
MInvoke(T4 = 2h)

Full compatibility

s1 s3s2
T1: a(+) T2: b(-)

CInvoke(1h < T1 < 1h30m)

s1 s3s2

s4

T1: a(-)

T2: b(+)

T3: c(+)

T4: delay
MInvoke(T1 = 3m)

T5: expiration
MInvoke(T4 = 2h)

Repl. w.r.t. client protocol

s0 s2s1

s3 s4

T1: a(+) T2: b(-)

T3: c(-)

T5: e(+)

T4: d(+)

P1

22

Repl. w.r.t. client protocol

s0 s2s1

s3 s4

T1: a(+) T2: b(-)

T3: c(-)

T5: e(+)

T4: d(+)

P1

s0 s2s1

s3 s4

T1: a(+) T2: b(-)

T3: c(-)

T4: d(+)

C-Invoke(T1 < 4h)

P2

22

Repl. w.r.t. client protocol

s0 s2s1

s3 s4

T1: a(+) T2: b(-)

T3: c(-)

T5: e(+)

T4: d(+)

P1

s0 s2s1

s3 s4

T1: a(+) T2: b(-)

T3: c(-)

T4: d(+)

C-Invoke(T1 < 4h)

P2

22

Repl. w.r.t. client protocol

s0 s2s1

s3 s4

T1: a(+) T2: b(-)

T3: c(-)

T5: e(+)

T4: d(+)

P1

s0 s2s1

s3 s4

T1: a(+) T2: b(-)

T3: c(-)

T4: d(+)

C-Invoke(T1 < 4h)

P2

22

Protocol operators

Subsumption

Equivalence

Parallel composition

Intersection

Difference

≡
�

||ti

||td

||tc

23

Protocol operators
Subsumption

Equivalence

Parallel composition

Intersection

Difference

≡
�

||ti

||td

||tc

[P1 ||tc P2]P1
≡ P1

Full compatibility

23

Approach

Protocols

- model
- analysis
- operators

Timed
protocols

- model
- analysis
- operators

CInvoke + MInvoke

24

Approach

Protocols

- model
- analysis
- operators

Timed
protocols

- model
- analysis
- operators

CInvoke + MInvoke

24

decidability

closure

Approach

Protocols

- model
- analysis
- operators

Timed
protocols

- model
- analysis
- operators

CInvoke + MInvoke

24

decidability

closure ?

Outline

Introduction

Timed protocols modeling

Prototyping, applications

1

25

Theoretical study of time impacts

Conclusion

2

3

4

5

Protocol
timed

automata

26

Timed automata (Alur, Dill 94)

s0 s2s1

a b

Clocks over dense time

Guards and resets

Extensive research in model checking

27

Timed automata (Alur, Dill 94)

s0 s2s1

a b

Clocks over dense time

Guards and resets

Extensive research in model checking

L = {(a, t1) · (b, t2) | t2 − t1 < 5}
27

Timed automata (Alur, Dill 94)

s0 s2s1

a b

Clocks over dense time

Guards and resets

Extensive research in model checking

{x} (x < 5)

L = {(a, t1) · (b, t2) | t2 − t1 < 5}

reset guard

27

Approach

Timed

protocols

Protocol

timed

automata

Timed automata

28

29

Mapping

Class characterization

New results

Time domain

R R ∪ {⊥}

30

(like event-recording automata)

Time domain

R R ∪ {⊥}

30

(like event-recording automata)

never
happened

CInvoke mapping

s1 s2

s3

T10: a(+)

CInvoke(T1 > 5 && T2 < 10)

T11: b(+)

31

CInvoke mapping

s1 s2

s3

a(+)

b(+)

(xT1 > 5) ∧ (xT2 < 10)
{xT10}

{xT11}

31

CInvoke mapping

s1 s2

s3

a(+)

b(+)

(xT1 > 5) ∧ (xT2 < 10)
{xT10}

{xT11}

31

CInvoke mapping

s1 s2

s3

a(+)

b(+)

(xT1 > 5) ∧ (xT2 < 10)
{xT10}

{xT11}

31

MInvoke mapping

s1
T10: a(+)

s2

s3

T11

M-Invoke(T2 = 10 && T3 < 5)

32

MInvoke mapping

s1

a(+)
s2

s3

{xT10}

{xT11}ε
(xT2 = 10) ∧ (xT3 < 5)

32

MInvoke mapping

s1

a(+)
s2

s3

{xT10}

{xT11}ε
(xT2 = 10) ∧ (xT3 < 5)

enforce?

32

MInvoke behavior

(xT2 = 10) ∧ (xT3 < 5)

(xT2 = 10) |= true
location
entry

33

MInvoke behavior

(xT2 = 10) ∧ (xT3 < 5)

(xT2 = 10) |= true
location
entry

34

MInvoke behavior

(xT2 = 10) ∧ (xT3 < 5)

(xT2 = 10) |= true

location
entry

35

MInvoke behavior

(xT2 = 10) ∧ (xT3 < 5)

(xT2 = 10) |= true
location
entry

36

MInvoke behavior

(xT2 = 10) ∧ (xT3 < 5)

(xT2 = 10) |= true
location
entry

36

not satisfied

MInvoke behavior

(xT2 = 10) ∧ (xT3 < 5)

(xT2 = 10) |= true
location
entry

36

Rewriting

s1

{xT1 , ys1}

{xTn , ys1} s2ε, gε

g1

gm

37

gm ∧ permits(gε)

g1 ∧ permits(gε)

Rewriting

s1

{xT1 , ys1}

{xTn , ys1} s2ε, gε
37

Capturing valuations

s1

ε
s2

{xTn}

{xT1}

38

Capturing valuations

s1

ε
s2

{xT1 , ys1}

{xTn , ys1}

38

Capturing valuations

s1

ε
s2

{xT1 , ys1}

{xTn , ys1} ∀x, (x− y = k)

38

Capturing valuations

s1

ε
s2

{xT1 , ys1}

{xTn , ys1} ∀x, (x− y = k)

38

(v(y) = 0) =⇒ (x = k)

MInvoke inhibitor

inhib ((xT2 = 10) ∧ (xT3 < 5)) = (xT3 − xT2 ≥ 5− 10)

39

MInvoke inhibitor

inhib ((xT2 = 10) ∧ (xT3 < 5)) = (xT3 − xT2 ≥ 5− 10)

v(xT2) = 10

(xT3 ≥ 5)
39

Please note that...

inhib (xT2 = 10) = false

40

Permitting / disabling

From timed protocols to protocol timed automata

Going back to the timed automaton of Figure 4.6:




inhib(g1) = false
inhib(g2) = (xT2 − xT1 ≤ −8)

Without loss of generality, we chose to reduce the ε-labeled switch guard
g to a unique conjunction in the previous definition to simplify the nota-
tions. The case where g is a disjunction is easy: we consider it as multiple
ε-labeled switches with each switch having a single conjunctive guard. We
keep this assumption in the remainder.

With this inhib function at hand, we can now define a function called
permits. When given the guard of a ε-labeled switch, it defines when the
other switches from the same source location can be enabled without con-
tradicting M-Invoke constraints.

Definition 6 (permits function). Let a guard g := (x = k)∧g� of a ε-labeled
switch defined over a ε-labeled switch l → l� such as x is a clock over T,
k is a constant in Q ∪ {⊥} and g� is any clocks constraint. Let y ∈ Y the
clock that is commonly reset by all the switches whose target location is l.
We define the following clauses:

1. S1 = (x < k)

2. S2 = (x > k) ∧ (x− y > k)

3. S3 = (x > k) ∧ (x− y ≤ k) ∧ inhib(g)

4. S4 = (x = k) ∧ inhib(g)

The function permits(g) is defined as

permits(g) =
�

i∈{1,2,3,4}
Si

The permits function disjunctive clauses play the following roles. S1

captures the cases where the current clocks valuation v ensures that v(x) is
still below k. S2 captures the cases where v is above k and the location l has

81

ε

41

Permitting / disabling

From timed protocols to protocol timed automata

Going back to the timed automaton of Figure 4.6:




inhib(g1) = false
inhib(g2) = (xT2 − xT1 ≤ −8)

Without loss of generality, we chose to reduce the ε-labeled switch guard
g to a unique conjunction in the previous definition to simplify the nota-
tions. The case where g is a disjunction is easy: we consider it as multiple
ε-labeled switches with each switch having a single conjunctive guard. We
keep this assumption in the remainder.

With this inhib function at hand, we can now define a function called
permits. When given the guard of a ε-labeled switch, it defines when the
other switches from the same source location can be enabled without con-
tradicting M-Invoke constraints.

Definition 6 (permits function). Let a guard g := (x = k)∧g� of a ε-labeled
switch defined over a ε-labeled switch l → l� such as x is a clock over T,
k is a constant in Q ∪ {⊥} and g� is any clocks constraint. Let y ∈ Y the
clock that is commonly reset by all the switches whose target location is l.
We define the following clauses:

1. S1 = (x < k)

2. S2 = (x > k) ∧ (x− y > k)

3. S3 = (x > k) ∧ (x− y ≤ k) ∧ inhib(g)

4. S4 = (x = k) ∧ inhib(g)

The function permits(g) is defined as

permits(g) =
�

i∈{1,2,3,4}
Si

The permits function disjunctive clauses play the following roles. S1

captures the cases where the current clocks valuation v ensures that v(x) is
still below k. S2 captures the cases where v is above k and the location l has

81

ε

From timed protocols to protocol timed automata

Going back to the timed automaton of Figure 4.6:




inhib(g1) = false
inhib(g2) = (xT2 − xT1 ≤ −8)

Without loss of generality, we chose to reduce the ε-labeled switch guard
g to a unique conjunction in the previous definition to simplify the nota-
tions. The case where g is a disjunction is easy: we consider it as multiple
ε-labeled switches with each switch having a single conjunctive guard. We
keep this assumption in the remainder.

With this inhib function at hand, we can now define a function called
permits. When given the guard of a ε-labeled switch, it defines when the
other switches from the same source location can be enabled without con-
tradicting M-Invoke constraints.

Definition 6 (permits function). Let a guard g := (x = k)∧g� of a ε-labeled
switch defined over a ε-labeled switch l → l� such as x is a clock over T,
k is a constant in Q ∪ {⊥} and g� is any clocks constraint. Let y ∈ Y the
clock that is commonly reset by all the switches whose target location is l.
We define the following clauses:

1. S1 = (x < k)

2. S2 = (x > k) ∧ (x− y > k)

3. S3 = (x > k) ∧ (x− y ≤ k) ∧ inhib(g)

4. S4 = (x = k) ∧ inhib(g)

The function permits(g) is defined as

permits(g) =
�

i∈{1,2,3,4}
Si

The permits function disjunctive clauses play the following roles. S1

captures the cases where the current clocks valuation v ensures that v(x) is
still below k. S2 captures the cases where v is above k and the location l has

81

permits(g)

41

Permitting / disabling

From timed protocols to protocol timed automata

Going back to the timed automaton of Figure 4.6:




inhib(g1) = false
inhib(g2) = (xT2 − xT1 ≤ −8)

Without loss of generality, we chose to reduce the ε-labeled switch guard
g to a unique conjunction in the previous definition to simplify the nota-
tions. The case where g is a disjunction is easy: we consider it as multiple
ε-labeled switches with each switch having a single conjunctive guard. We
keep this assumption in the remainder.

With this inhib function at hand, we can now define a function called
permits. When given the guard of a ε-labeled switch, it defines when the
other switches from the same source location can be enabled without con-
tradicting M-Invoke constraints.

Definition 6 (permits function). Let a guard g := (x = k)∧g� of a ε-labeled
switch defined over a ε-labeled switch l → l� such as x is a clock over T,
k is a constant in Q ∪ {⊥} and g� is any clocks constraint. Let y ∈ Y the
clock that is commonly reset by all the switches whose target location is l.
We define the following clauses:

1. S1 = (x < k)

2. S2 = (x > k) ∧ (x− y > k)

3. S3 = (x > k) ∧ (x− y ≤ k) ∧ inhib(g)

4. S4 = (x = k) ∧ inhib(g)

The function permits(g) is defined as

permits(g) =
�

i∈{1,2,3,4}
Si

The permits function disjunctive clauses play the following roles. S1

captures the cases where the current clocks valuation v ensures that v(x) is
still below k. S2 captures the cases where v is above k and the location l has

81

ε

From timed protocols to protocol timed automata

Going back to the timed automaton of Figure 4.6:




inhib(g1) = false
inhib(g2) = (xT2 − xT1 ≤ −8)

Without loss of generality, we chose to reduce the ε-labeled switch guard
g to a unique conjunction in the previous definition to simplify the nota-
tions. The case where g is a disjunction is easy: we consider it as multiple
ε-labeled switches with each switch having a single conjunctive guard. We
keep this assumption in the remainder.

With this inhib function at hand, we can now define a function called
permits. When given the guard of a ε-labeled switch, it defines when the
other switches from the same source location can be enabled without con-
tradicting M-Invoke constraints.

Definition 6 (permits function). Let a guard g := (x = k)∧g� of a ε-labeled
switch defined over a ε-labeled switch l → l� such as x is a clock over T,
k is a constant in Q ∪ {⊥} and g� is any clocks constraint. Let y ∈ Y the
clock that is commonly reset by all the switches whose target location is l.
We define the following clauses:

1. S1 = (x < k)

2. S2 = (x > k) ∧ (x− y > k)

3. S3 = (x > k) ∧ (x− y ≤ k) ∧ inhib(g)

4. S4 = (x = k) ∧ inhib(g)

The function permits(g) is defined as

permits(g) =
�

i∈{1,2,3,4}
Si

The permits function disjunctive clauses play the following roles. S1

captures the cases where the current clocks valuation v ensures that v(x) is
still below k. S2 captures the cases where v is above k and the location l has

81

permits(g)

41

Permitting / disabling

From timed protocols to protocol timed automata

Going back to the timed automaton of Figure 4.6:




inhib(g1) = false
inhib(g2) = (xT2 − xT1 ≤ −8)

Without loss of generality, we chose to reduce the ε-labeled switch guard
g to a unique conjunction in the previous definition to simplify the nota-
tions. The case where g is a disjunction is easy: we consider it as multiple
ε-labeled switches with each switch having a single conjunctive guard. We
keep this assumption in the remainder.

With this inhib function at hand, we can now define a function called
permits. When given the guard of a ε-labeled switch, it defines when the
other switches from the same source location can be enabled without con-
tradicting M-Invoke constraints.

Definition 6 (permits function). Let a guard g := (x = k)∧g� of a ε-labeled
switch defined over a ε-labeled switch l → l� such as x is a clock over T,
k is a constant in Q ∪ {⊥} and g� is any clocks constraint. Let y ∈ Y the
clock that is commonly reset by all the switches whose target location is l.
We define the following clauses:

1. S1 = (x < k)

2. S2 = (x > k) ∧ (x− y > k)

3. S3 = (x > k) ∧ (x− y ≤ k) ∧ inhib(g)

4. S4 = (x = k) ∧ inhib(g)

The function permits(g) is defined as

permits(g) =
�

i∈{1,2,3,4}
Si

The permits function disjunctive clauses play the following roles. S1

captures the cases where the current clocks valuation v ensures that v(x) is
still below k. S2 captures the cases where v is above k and the location l has

81

ε

From timed protocols to protocol timed automata

Going back to the timed automaton of Figure 4.6:




inhib(g1) = false
inhib(g2) = (xT2 − xT1 ≤ −8)

Without loss of generality, we chose to reduce the ε-labeled switch guard
g to a unique conjunction in the previous definition to simplify the nota-
tions. The case where g is a disjunction is easy: we consider it as multiple
ε-labeled switches with each switch having a single conjunctive guard. We
keep this assumption in the remainder.

With this inhib function at hand, we can now define a function called
permits. When given the guard of a ε-labeled switch, it defines when the
other switches from the same source location can be enabled without con-
tradicting M-Invoke constraints.

Definition 6 (permits function). Let a guard g := (x = k)∧g� of a ε-labeled
switch defined over a ε-labeled switch l → l� such as x is a clock over T,
k is a constant in Q ∪ {⊥} and g� is any clocks constraint. Let y ∈ Y the
clock that is commonly reset by all the switches whose target location is l.
We define the following clauses:

1. S1 = (x < k)

2. S2 = (x > k) ∧ (x− y > k)

3. S3 = (x > k) ∧ (x− y ≤ k) ∧ inhib(g)

4. S4 = (x = k) ∧ inhib(g)

The function permits(g) is defined as

permits(g) =
�

i∈{1,2,3,4}
Si

The permits function disjunctive clauses play the following roles. S1

captures the cases where the current clocks valuation v ensures that v(x) is
still below k. S2 captures the cases where v is above k and the location l has

81

permits(g)

41

Permitting / disabling

From timed protocols to protocol timed automata

Going back to the timed automaton of Figure 4.6:




inhib(g1) = false
inhib(g2) = (xT2 − xT1 ≤ −8)

Without loss of generality, we chose to reduce the ε-labeled switch guard
g to a unique conjunction in the previous definition to simplify the nota-
tions. The case where g is a disjunction is easy: we consider it as multiple
ε-labeled switches with each switch having a single conjunctive guard. We
keep this assumption in the remainder.

With this inhib function at hand, we can now define a function called
permits. When given the guard of a ε-labeled switch, it defines when the
other switches from the same source location can be enabled without con-
tradicting M-Invoke constraints.

Definition 6 (permits function). Let a guard g := (x = k)∧g� of a ε-labeled
switch defined over a ε-labeled switch l → l� such as x is a clock over T,
k is a constant in Q ∪ {⊥} and g� is any clocks constraint. Let y ∈ Y the
clock that is commonly reset by all the switches whose target location is l.
We define the following clauses:

1. S1 = (x < k)

2. S2 = (x > k) ∧ (x− y > k)

3. S3 = (x > k) ∧ (x− y ≤ k) ∧ inhib(g)

4. S4 = (x = k) ∧ inhib(g)

The function permits(g) is defined as

permits(g) =
�

i∈{1,2,3,4}
Si

The permits function disjunctive clauses play the following roles. S1

captures the cases where the current clocks valuation v ensures that v(x) is
still below k. S2 captures the cases where v is above k and the location l has

81

ε

From timed protocols to protocol timed automata

Going back to the timed automaton of Figure 4.6:




inhib(g1) = false
inhib(g2) = (xT2 − xT1 ≤ −8)

Without loss of generality, we chose to reduce the ε-labeled switch guard
g to a unique conjunction in the previous definition to simplify the nota-
tions. The case where g is a disjunction is easy: we consider it as multiple
ε-labeled switches with each switch having a single conjunctive guard. We
keep this assumption in the remainder.

With this inhib function at hand, we can now define a function called
permits. When given the guard of a ε-labeled switch, it defines when the
other switches from the same source location can be enabled without con-
tradicting M-Invoke constraints.

Definition 6 (permits function). Let a guard g := (x = k)∧g� of a ε-labeled
switch defined over a ε-labeled switch l → l� such as x is a clock over T,
k is a constant in Q ∪ {⊥} and g� is any clocks constraint. Let y ∈ Y the
clock that is commonly reset by all the switches whose target location is l.
We define the following clauses:

1. S1 = (x < k)

2. S2 = (x > k) ∧ (x− y > k)

3. S3 = (x > k) ∧ (x− y ≤ k) ∧ inhib(g)

4. S4 = (x = k) ∧ inhib(g)

The function permits(g) is defined as

permits(g) =
�

i∈{1,2,3,4}
Si

The permits function disjunctive clauses play the following roles. S1

captures the cases where the current clocks valuation v ensures that v(x) is
still below k. S2 captures the cases where v is above k and the location l has

81

permits(g)

41

Generalization

s1 s2

s3

s4

g ∧ permits(g1) ∧ permits(g2)

g1 ∧ permits(g2)

g2 ∧ permits(g1)

ε

a

ε

42

43

Mapping

Class characterization

New results

What do we need?

�

≡

||tc

||ti

||td

language inclusion

intersection

complementation

44

Timed automata
Problem Result

Union Closed

Intersection Closed

Projection Closed

Complementation Not closed

Language inclusion Not decidable

Language equivalence Not decidable

Universality Not decidable

Emptiness / reachability PSPACE-Complete
45

Timed automata
Problem Result

Union Closed

Intersection Closed

Projection Closed

Complementation Not closed

Language inclusion Not decidable

Language equivalence Not decidable

Universality Not decidable

Emptiness / reachability PSPACE-Complete
45

Timed automata
Problem Result

Union Closed

Intersection Closed

Projection Closed

Complementation Not closed

Language inclusion Not decidable

Language equivalence Not decidable

Universality Not decidable

Emptiness / reachability PSPACE-Complete
45

Better classes?

Class Complementation

Deterministic TA Closed

Event-clock TA Closed

(others) Not closed

46

Better classes?

Class Complementation

Deterministic TA Closed

Event-clock TA Closed

(others) Not closed

46

Better classes?

Class Complementation

Deterministic TA Closed

Event-clock TA Closed

(others) Not closed

Silent transitions!
46

47

Mapping

Class characterization

New results

Expressiveness

Silent transitions cannot be removed!

48

Expressiveness

Silent transitions cannot be removed!

Clocks resets

48

Expressiveness

Silent transitions cannot be removed!

Corrolary 29 of “Characterization of the expressive power of
silent transitions in timed automata”, B.Bérard, V.Diekert, P. Gastin
and A. Petit

Clocks resets

48

Precise actions

Proof sketch

�
�
� �

���
�

�

��

����

�
�
� �

� �� ������ ����

��� ��

�
�
� �

������ ���������� ���������� �����

��� � � �� ��

�
�
��

� �� ������ ������ ����

��� ��

(b, δ1) · (b, δ2) · · · (b, δd−1) · (a, d) · (a, d + 1) · · ·

49

Proof sketch

�
�
� �

���
�

�

��

����

�
�
� �

� �� ������ ����

��� ��

�
�
� �

������ ���������� ���������� �����

��� � � �� ��

�
�
��

� �� ������ ������ ����

��� ��

(b, δ1) · (b, δ2) · · · (b, δd−1) · (a, d) · (a, d + 1) · · ·

Cmax = 1
d ∈ N such that d ≥ cmax

δi �∈ N

49

Proof sketch

�
�
� �

���
�

�

��

����

�
�
� �

� �� ������ ����

��� ��

�
�
� �

������ ���������� ���������� �����

��� � � �� ��

�
�
��

� �� ������ ������ ����

��� ��

(b, δ1) · (b, δ2) · · · (b, δd−1) · (a, d) · (a, d + 1) · · ·

a are precise events

Cmax = 1
d ∈ N such that d ≥ cmax

δi �∈ N

49

Proof sketch

�
�
� �

���
�

�

��

����

�
�
� �

� �� ������ ����

��� ��

�
�
� �

������ ���������� ���������� �����

��� � � �� ��

�
�
��

� �� ������ ������ ����

��� ��

(b, δ1) · (b, δ2) · · · (b, δd−1) · (a, d) · (a, d + 1) · · ·

a are precise events
d ≥ cmax ⇒ ∃ precise b

Cmax = 1
d ∈ N such that d ≥ cmax

δi �∈ N

49

Complementation

s1 s2 s3

a(+)

{xT1}
b(+)

(xT1 < 3)

50

Complementation

s1 s2 s3

a(+)

{xT1}
b(+)

(xT1 < 3)

q

a(+)(xT1 ≥ 3)
b(+)

a, b

a, b

b(+)

50

Complementation

s3

q

a(+)

{xT1}
b(+)

(xT1 < 3)

a(+)(xT1 ≥ 3)
b(+)

a, b

a, b

s2s1

b(+)

50

Closure: complementation

51

“one run per
timed word”

Closure: complementation

51

“one run per
timed word”

MInvoke make
precise!

MInvoke(T1 = 3h and T2 < 25m)

Protocol timed automata

52

1 clock per switch

“1 clock per location”

Restricted form of unremovable silent transitions

Deterministic behavior

Closed under complementation!

Protocol operators

53

Intersection

s0 s1 s2 s3

a(+), g1, {xT1} a(+), g2, {xT2}

54

Intersection

s0 s1 s2 s3

a(+), g1, {xT1} a(+), g2, {xT2}

(s0,s2) (s1,s3)

a(+), g1 ∧ g2, {xT1T2}

54

Intersection

s0 s1 s2 s3

a(+), g1, {xT1} a(+), g2, {xT2}

(s0,s2) (s1,s3)

a(+), g1 ∧ g2, {xT1T2}

54

Intersection

s0 s1 s2 s3

a(+), g1, {xT1} a(+), g2, {xT2}

(s0,s2) (s1,s3)

a(+), g1 ∧ g2, {xT1T2}

54

Intersection

s0 s1

s2

ε, g2 = (x1 = k1) ∧ g�
2

a(+), g1 ∧ permits(g2)
s3 s4

s5

ε, g4 = (x2 = k2) ∧ g�
4

a(+), g3 ∧ permits(g4)

55

Intersection

s0 s1

s2

ε, g2 = (x1 = k1) ∧ g�
2

a(+), g1 ∧ permits(g2)
s3 s4

s5

ε, g4 = (x2 = k2) ∧ g�
4

a(+), g3 ∧ permits(g4)

(s0,s3) (s1,s4)

(s2,s3)

(s0,s5)

(s2,s5)

a(+), g1 ∧ g3

ε

ε

ε

ε

ε

55

Intersection

s0 s1

s2

ε, g2 = (x1 = k1) ∧ g�
2

a(+), g1 ∧ permits(g2)
s3 s4

s5

ε, g4 = (x2 = k2) ∧ g�
4

a(+), g3 ∧ permits(g4)

(s0,s3) (s1,s4)

(s2,s3)

(s0,s5)

(s2,s5)

a(+), g1 ∧ g3

ε

ε

ε

ε

ε

55

Intersection

s0 s1

s2

ε, g2 = (x1 = k1) ∧ g�
2

a(+), g1 ∧ permits(g2)
s3 s4

s5

ε, g4 = (x2 = k2) ∧ g�
4

a(+), g3 ∧ permits(g4)

(s0,s3) (s1,s4)

(s2,s3)

(s0,s5)

(s2,s5)

a(+), g1 ∧ g3

ε

ε

ε

ε

ε

56

Intersection

s0 s1

s2

ε, g2 = (x1 = k1) ∧ g�
2

a(+), g1 ∧ permits(g2)
s3 s4

s5

ε, g4 = (x2 = k2) ∧ g�
4

a(+), g3 ∧ permits(g4)

(s0,s3) (s1,s4)

(s2,s3)

(s0,s5)

(s2,s5)

a(+), g1 ∧ g3

ε

ε

ε

ε

ε

56

Intersection

s0 s1

s2

ε, g2 = (x1 = k1) ∧ g�
2

a(+), g1 ∧ permits(g2)
s3 s4

s5

ε, g4 = (x2 = k2) ∧ g�
4

a(+), g3 ∧ permits(g4)

(s0,s3) (s1,s4)

(s2,s3)

(s0,s5)

(s2,s5)

a(+), g1 ∧ g3

ε

ε

ε

ε

ε

56

Intersection

s0 s1

s2

ε, g2 = (x1 = k1) ∧ g�
2

a(+), g1 ∧ permits(g2)
s3 s4

s5

ε, g4 = (x2 = k2) ∧ g�
4

a(+), g3 ∧ permits(g4)

(s0,s3) (s1,s4)

(s2,s3)

(s0,s5)

(s2,s5)

a(+), g1 ∧ g3

ε

ε

ε

ε

ε

57

Intersection

s0 s1

s2

ε, g2 = (x1 = k1) ∧ g�
2

a(+), g1 ∧ permits(g2)
s3 s4

s5

ε, g4 = (x2 = k2) ∧ g�
4

a(+), g3 ∧ permits(g4)

(s0,s3) (s1,s4)

(s2,s3)

(s0,s5)

(s2,s5)

a(+), g1 ∧ g3

ε

ε

ε

ε

ε

57

Intersection

s0 s1

s2

ε, g2 = (x1 = k1) ∧ g�
2

a(+), g1 ∧ permits(g2)
s3 s4

s5

ε, g4 = (x2 = k2) ∧ g�
4

a(+), g3 ∧ permits(g4)

(s0,s3) (s1,s4)

(s2,s3)

(s0,s5)

(s2,s5)

a(+), g1 ∧ g3

ε

ε

ε

ε

ε

+ permits

+ y clocks

57

Complementation

s1 s2

s3

ε, gε

a(+), g1 ∧ permits(gε)

a(+), g2 ∧ permits(gε)

s4

58

Complementation

s1 s2

s3

ε, gε

a(+), g1 ∧ permits(gε)

a(+), g2 ∧ permits(gε)

s4

q

¬(g1 ∨ g2) ∧ permits(gε)
a(+)

58

Emptiness checking

(...)

59

Emptiness checking

(...)

59

Emptiness checking

(...)

remains PSPACE-Complete
59

Closure / decidability

Problem Result

Intersection Closed

Complementation Closed

Emptiness PSPACE-Complete

60

Closure / decidability

Problem Result

Intersection Closed

Complementation Closed

Emptiness PSPACE-Complete

60

Protocol operators

Closure under:
• intersection
• parallel composition
• difference

Subsumption and equivalence are decidable

61

Outline

Introduction

Timed protocols modeling

Prototyping, applications

1

62

Theoretical study of time impacts

Conclusion

2

3

4

5

Applications

63

UNSW (Australia)

LIMOS (France)

U. Trento (Italy)

LIRIS (France)

http://servicemosaic.isima.fr/
64

http://servicemosaic.isima.fr
http://servicemosaic.isima.fr

Analysis and
management interface

Trust negotiation protocol
editor

Business protocol editor

Composition editor

Mismatch pattern editor

Discovery and refinement
editor

Protocol analysis and
manipulation operators

Code generators from
protocol models

Adapter generator

Protocol discovery

Models representation, storage and manipulation components

Service descriptions
and models

Mismatch patterns
templates

Execution logs

Web service
interface

65

Analysis and
management interface

Trust negotiation protocol
editor

Business protocol editor

Composition editor

Mismatch pattern editor

Discovery and refinement
editor

Protocol analysis and
manipulation operators

Code generators from
protocol models

Adapter generator

Protocol discovery

Models representation, storage and manipulation components

Service descriptions
and models

Mismatch patterns
templates

Execution logs

Web service
interface

65

AntLR

Protocols model library

Eclipse
platform

GroovyUPPAAL

Protocols extraction libraryOperators library Graphical editing framework

Eclipse plug-ins: editor, analysis, operators, extractor, help

Protocols project

66

AntLR

Protocols model library

Eclipse
platform

GroovyUPPAAL

Protocols extraction libraryOperators library Graphical editing framework

Eclipse plug-ins: editor, analysis, operators, extractor, help

Protocols project

66

67

67

67

67

67

����������������	�
��

����	������������
	����

����	�����
	����

��
����
�������� ��
����
�������� �����������

���� ����

����	�������������������

����	����������

��
����
���������������
�� �����������

��������
����	

����	���������
�

����	���������
�

����	��������������
�

����������������

���	

���	

����

�����

������

����

���� �������

�� �	

�����
� �����

���
� ������������

���������

��������

���������

��������

BPEL

68

����������������	�
��

����	������������
	����

����	�����
	����

��
����
�������� ��
����
�������� �����������

���� ����

����	�������������������

����	����������

��
����
���������������
�� �����������

��������
����	

����	���������
�

����	���������
�

����	��������������
�

����������������

���	

���	

����

�����

������

����

���� �������

�� �	

�����
� �����

���
� ������������

���������

��������

���������

��������

Accounting

Customers

Warehouse

Delivery

BPEL Protocols

68

Development
environments

Runtime
environments

Composite
application

69

Services with protocols

Development
environments

Runtime
environments

Composite
application

69

Services with protocols

Development
environments

Runtime
environments

Composite
application

Compatibility

69

Services with protocols

Development
environments

Runtime
environments

Composite
application

Compatibility Replaceability

69

“Agile” composition

Facilitate rapid
prototyping

Facilitate hot
replacement

70

Outline

Introduction

Timed protocols modeling

Prototyping, applications

1

71

Theoretical study of time impacts

Conclusion

2

3

4

5

Conclusion

72

Summary

73

Formalization of
timing constraints

Protocol timed
automata

ServiceMosaic
Protocols

Summary

73

Formalization of
timing constraints

Protocol timed
automata

ε

ServiceMosaic
Protocols

MI

Limits

• No network hazard

• No absolute time

• “a == a”

74

Querying

Protocols
database

75

Querying

Protocols
database

Compatibility? Replaceability?

75

Testing

Service

Protocol+

76

Testing

Service

Protocol+ Test cases

76

Testing

Service

Protocol+ Test cases

Minimal coverage?

Meaningful & bogus data?

Loops handling?

76

Controllers

Service

Requesters

Protocol

Controller

77

Mining

Execution logs

Protocol

78

Adaptation

Service
protocol

Client
protocolMismatch

79

Adaptation

Service
protocol

Client
protocolAdapter

79

Thank you!

http://www.isima.fr/~ponge/

http://www.isima.fr/~ponge/
http://www.isima.fr/~ponge/

